首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth properties of juvenile spotted wolffish Anarhichas minor reared at 4, 6, 8 and 12° C, and a group reared under 'temperature steps', (T‐step) i.e . with temperature reduced successively from 12 to 9 and 6° C were investigated. Growth rate and feed efficiency ration was significantly influenced by temperature and fish size. Overall growth rate was highest at 6° C (0·68% day−1) and lowest at 12° C (0·48% day−1), while the 4 and 8° C, and the T‐step groups had similar overall growth rates, i.e . 0·59, 0·62 and 0·51% day−1 respectively. Optimal temperature for growth ( T opt G ) and feed efficiency ratio (Topt FCE) decreased as fish size increased, indicating an ontogenetic reduction in T opt G and T opt FCE. The results suggest a T opt G of juvenile spotted wolffish in the size range 135–380 g, dropping from 7·9° C for 130–135 g to 6·6° C for 360–380 g juveniles. The T opt FCE dropped from 7·4° C for 120–150 g to 6·5° C for 300–380 g juveniles. A wider parabolic regression curve between growth, feed efficiency ratio and temperature as fish size increased, may indicate increased temperature tolerance with size. Individual growth rates varied greatly at all time periods within the experimental temperatures, but at the same time significant size rank correlations were maintained and this may indicate stable size hierarchies in juvenile spotted wolffish.  相似文献   

2.
N. Fukuda    M. Kuroki    A. Shinoda    Y. Yamada    A. Okamura    J. Aoyama    K. Tsukamoto 《Journal of fish biology》2009,74(9):1915-1933
The influences of water temperature and feeding regime on otolith growth in Anguilla japonica glass eels and elvers were investigated using individuals reared at 5, 10, 15, 20, 25 and 30° C and in fed or unfed conditions at salinity 32 after their otoliths were marked with alizarin complexone (ALC). To eliminate the difficulty of observing the edges of otoliths with optical (OM) or scanning electron (SEM) microscopes, three to 10 individuals were sampled from each tank at 10, 20 and 30 days during the experiment and reared for an additional 10 days at 25° C after their otoliths were marked a second time. Otolith growth and the number of increments were measured using both OM and SEM. Most A. japonica commenced feeding after 10 days at 20–30° C or after 20 days at 15° C, but no feeding occurred at 5 and 10° C. No otolith growth occurred at 5 and 10° C except in two individuals with minimal increment deposition at 10° C. Otolith growth was proportional to water temperature within 15–25° C and not different between 25 and 30° C. At 15, 25 and 30° C, the mean otolith growth rate in fed conditions was higher than in unfed conditions. The number of increments per day was significantly different among water temperatures (0·00–0·01 day−1 at 5 and 10° C, 0·43–0·48 day−1 at 15° C and 0·94–1·07 day−1 at 20–30° C). These results indicated that otolith growth in A. japonica glass eels and elvers was affected by temperature and ceased at ≤10° C under experimental conditions. Hence, future studies analysing the otoliths of wild-caught A. japonica glass eels and elvers need to carefully consider the water temperatures potentially experienced by the juveniles in the wild.  相似文献   

3.
SUMMARY. 1. Nemurella pictetii Klapæplek took 2 years to complete its life cycle in both the laboratory and a small stream in the English Lake District.
2. Hatching time (days after oviposition for 10%. 50% and 90% of the eggs to hatch) and hatching period (days between dates for 10% and 90% hatched) decreased with increasing water temperature in the laboratory, and the relationships were well described by a power-law. Estimates of the mean time for 50% hatching in the stream varied between 16 and 31 days after oviposition. depending on temperature.
3. Larval instars numbered fifteen for males and seventeen for females with a constant ratio of 1.18 between successive instars (conformed with Dyar's rule). Larval growth was exponential at four constant temperatures in the laboratory; mean instantaneous growth rates were 0.40±0.01% day−1 at 5.9°C, 0.43±0.01% day−1 at 8.2°C, 0.46±0.01% day−1 at 12. 1°C. 0.56±0.02%day−1 at 19.8°C. No larvae survived after instar XI at 19.8°C.
4. Larval growth was exponential in the stream and was scarcely affected by variations in water temperature (range 4.2 -14.0°C); mean growth rates for three year-classes were 0.41±0.02, 0.43±0.08, 0.54±0.05% day−1. Their similarity to laboratory growth rates under optimum conditions suggests that the availability of resources, such as food and space, was not restricting growth in the stream.  相似文献   

4.
Growth of captive juvenile Pacific halibut was linearly related to energy consumption (J g−1 day−1) at 4°C by the following equation: growth (% body weight (b.w.) day−1)=0–007 (consumption J g−1 day−1)– 0.192; r2 =0.81. Weight gain was independent of size for fish between 9 and 7000 g when growth was expressed as a function of consumption in J g−1 day−1. Maintenance ration determined in feeding–growth experiments averaged 27.4 J g−1 day−1 at 4–0°C. Small halibut ate significantly more food than large fish. Single meals following 2 day fasts averaged 4.1% b.w. for halibut under 100 g, 1.72% b.w. for 1.2 kg fish and 1.1% B.W. for 6.8 kg fish. Both large and small size categories of halibut tended to evacuate their meal in about 3 days even though small fish ate relatively larger meals. Minimum estimates for daily ration to achieve growth rates observed in the Gulf of Alaska were approximately 0.5 to 2.4% b.w. day−1 depending on fish size and whether northern shrimp or yellowfin sole were their prey.  相似文献   

5.
Growth of Pacific cod was related to energy consumption (cal g−1 day−1) and was well described by linear equations. Maintenance ration was 11 and 12 cal g−1 day−1 at 4.5 and 6.5° C, respectively. Cod between 200 and 5000 g had similar growth rates when growth was expressed as a function of consumption (cal g−1 day−1). Laboratory consumption of food averaged 0.9 and 1.3% body weight per day at 4.5 and 6.5° C, respectively. At these temperatures growth was 0.34–0.38% body weight day−1.
Maximum stomach volumes equated to approximately 4.7% of body weight with shrimp as prey. At this meal size Pacific cod did not feed the next day. A multiple meal evacuation experiment was used to verify the consumption estimates. A return-to-hunger estimate of the meal size evacuated was 1.5% body weight day−1 at 6.5° C, similar to the 1.3% consumption estimate. For Pacific cod fed a single meal of 1% body weight the estimated instantaneous evacuation rate was 0.63 body weight day−1 at 6.5° C. Meal size markedly affected the evacuation rate.
Measured consumption and growth rates are similar to those of Atlantic cod, Gadus morhua .  相似文献   

6.
The metamorphosis of Solea senegalensis was studied in larvae reared at 20° C and fed four different feeding regimes. A, Artemia (4 nauplii ml−1); B, Artemia (2 nauplii ml−1); C, mixed diet (2 nauplii ml−1 and 3 mg ml−1 microencapsulated diet); and D, microencapsulated diet (3·7 mg ml−1). Rotifers were also supplied in all cases during the first days of feeding. These feeding regimes supported different growth rates during the pre-metamorphosis period (regime A, G=0·376 day−1; regime B, G=0·253 day−1; regime C, G=0·254 day−1; regime D, G=0·162 day−1). Larvae started metamorphosis 9 days after hatching (DAH) when fed the regime A, 13 DAH with regime B, 11 DAH with regime C and 15 DAH with regime D. A minimum 5·6–5·9 mm LT was required under all feeding regimes to initiate the metamorphosis. Eye translocation was completed when the larvae reached 8·6–8·7 mm LT (regimes A, B and C), but only 7·3 mm LT with regime D. 4·4–6·2 days were required to complete eye migration under the regimes A, B and C, and 18·3 days under the regime D. This transformation is concomitant with changes in body reserves, and with the pattern of some digestive enzymes.  相似文献   

7.
The early development, growth and morphological changes of mackerel Scomber scombrus were investigated at different incubation temperatures (8, 10, 13, 15 and 18° C). Details on the early life history are illustrated with special reference to morphological transformations. Culture techniques to rear larval mackerel stages are described using laboratory cultured foods. Artificially fertilized eggs were hatched after 80·6 h at 18·4° C and 256·8 h at 8·7° C. The standard length ( L S) of the individuals at first feeding was 4·71 ± 0·18 mm. Four mortality critical periods and cannibalistic behaviour were identified. A maximum average larval size of 37·5 ± 4·41 mm L S was attained 30 days post-hatch (dph) at 18·4° C. Development and growth were affected significantly by temperature during both endogenous and exogenous feeding periods. Larvae grew more rapidly at high, than at low temperatures. Daily specific growth rate (in mass) ranged from 2·4% at 10·6° C to 16·9% at 18·4° C. Likewise, average growth rate (in length) ranged from 0·05 mm day−1 at 8·4° C to 0·37 mm day−1 at 18·4° C. The allometric relationship of L S, with several body measurements was not affected by temperature. Comparison with larvae collected in the Bay of Biscay did not show any significant difference in the dry mass and L S relationship; conversely, the growth rate in length differed significantly between both laboratory and field conditions. The trends observed in the laboratory are described in relation to some aspects of the year-class strength regulation.  相似文献   

8.
Juvenile (12–152 g) shortfinned eels Anguilla australis and longfinned eels A. dieffenbachia caught in New Zealand streams were fed squid mantle Nototodarus spp. 4 days per week in laboratory experiments. A linear multiple regression equation showed the amount of food eaten (0–2·7% w day−1) explained 77·7% of the variation in specific growth rates (–0·60 to +1·07% w day−1) among individual eels, while previous growth rates, water temperature (10·0–20·6°C), and eel weight (12–152 g) explained a further 5·6, 1·4 and 0·8%, respectively. Growth in length ranged from –0·3 to +0·9 mm day−1. Eels which were starved and then given high rations grew substantially faster than expected. Once growth rates were adjusted for differences in ration and other factors, there were no significant differences in growth rates between species or individual fish. Growth of shortfinned eels fed maximum rations of commercial eel food depended on fish size and water temperatures and ceased below 9·0°C. Growth rates in the wild were substantially less than the maximum possible, after seasonal changes in water temperatures were taken into account, indicating that food supplies and not low water temperatures were controlling growth rates in the wild.  相似文献   

9.
Eggs were collected from two stocks of lake whitefish, Coregonus clupeaformis , in Lakes Michigan and Huron to assess the effect of egg composition and prey density on larval growth and survival. Egg composition parameters including wet weight (mg egg−1), dry weight (mg egg−1), percent water, total caloric content (cal egg−1), caloric density (cal egg−1), percent lipid content, and total lipidcontent (mg egg−1) were measured. Fish hatched from six parental females in each stock were fed one of four rations (0, 18, 24, 50 brine shrimp larva−1 day−1) after yolk sac absorption. Length at hatch, endogenous growth, exogenous growth, and survival were measured during a 42-day laboratory experiment. Length at hatch of larvae was positively related to egg caloric content ( r 2=0.780). Endogenous growth for lake whitefish larvae was positively related to percent lipid content ( r 2=0.896) and total egg lipid content ( r 2=0.876) of parental females. Exogenous growth and survival of larval lake whitefish was positively related to prey availability. Larval fish growth was accurately modelled ( r 2=0.973) as a function of prey abundance using a threshold-corrected hyperbolic equation. These results indicate that both egg composition and prey availability have the potential to influence the growth and survival dynamics of larval lake whitefish significantly.  相似文献   

10.
Several estimates of minimal energy requirements for yellowfin sole were made. Energy expenditures of 1.6, 4.1 and 8.3 cal g−1 day−1 were obtained from starvation weight loss, standard metabolism and maintenance ration procedures, respectively, at 6° C. The temperature effect on energy requirement was reflected in the Q 10 values for starvation weight loss (2.0), standard metabolism (6.3) and maintenance ration (6.5).
Both energy intake and weight of food were linearly related to, and good predictors of, laboratory growth. These relationships were used to estimate the food and energy intake necessary for yellowfin sole to achieve a year's growth in the natural environment. Based on a caloric value of 2.0 kcal g−1 of food (herring fillets), yellowfin would require 0.35 to 0.39% body weight day−1 at 3° C to achieve the mean growth rate exhibited in the Bering Sea. To achieve Gulf of Alaska growth rates at 5 to 6° C, yellowfin would require 0.63% body weight day−1. Based on a caloric value of 0.57 kcal g−1 of food (chopped octopus), yellowfin would require 0.83% body weight per day to achieve the Gulf of Alaska growth rate (6° C). These requirements based on the calorific value of herring fillets, which are three to five times higher than previous estimates of daily ration in this species, are probably conservative estimates since many of their prey species have a lower energy content.  相似文献   

11.
For wild red snapper Lutjanus campechanus , mean otolith increment deposition rate after marking with oxytetracycline dihydrate (OTC) was daily (0.97 increments day−1) when growth rates were fast (0.63 mm fork length, L F day−1), but were not daily (0.82 increments day−1) when somatic growth was slow (0.2 mm L F day−1). For reared larvae ( n =8), increment deposition rates were daily (0.99–1.03 increments day−1), and growth rates ranged from 0.6 to 0.9 mm L F day−1. Growth rate affected increment deposition rate as a threshold function, i.e. when growth rate was <0.3 mm L F day−1, deposition was less than daily, but above this level increment deposition did not exceed a daily rate. As growth rates increased increment widths increased. Examination of a sub-sample ( n =8) of the otoliths from the slowest growing wild fish by scanning electron microscopy did not increase increment counts. Because L. campechanus are late spring-early summer spawners, young fish can expect maximum growth due to warm summer temperatures. Thus, daily ageing methods should be well suited to this species.  相似文献   

12.
The growth rates of naturally sympatric juvenile pink Oncorhynchus gorbuscha and sockeye Oncorhynchus nerka salmon were compared in a common lacustrine environment in south‐west Alsaka, an unusual opportunity given the normal disparity in freshwater residence time of these two species. Fork length ( L F) frequency distributions of juvenile pink salmon caught in the lake during the summer in 1991 and 1999–2003 indicated a growth rate of 0·54 mm day−1, 54% greater than the estimated growth rate of juvenile sockeye salmon sampled from 1958 to 2003 (0·35 mm day−1). Examination of daily growth rings on otoliths indicated that pink salmon in Lake Aleknagik grew an average of 1·34 mm day−1 in 2003 but sockeye salmon grew only 0·63 mm day−1(average specific growth rates were 3·0 and 1·8% day−1, respectively). Pink salmon increased from c . 32 mm L F and 0·2 g at emergence to 78 mm L F and 3·0 g within 3–4 weeks. After experiencing these rapid growth rates, the pink salmon appeared to leave the lake by late July in most years. The diets of pink and sockeye salmon in the littoral zone of the lake were very similar; >80% of the stomach contents consisted of adult and pupal insects and the remainder was zooplankton. This high degree of diet overlap suggested that the observed differences in growth rate were not attributable to variation in prey composition.  相似文献   

13.
Blue-spotted trevally, Caranx bucculentus , were fed different rations of pilchard and prawn in order to investigate feeding and growth relationships. Maintenance rations at 25.5° C amounted to 3.7% B.W. day−1 and 2.7% B.W. day−1 for prawns and pilchards, respectively. Additional feeding experiments at 28.9° C yielded a maintenance ration of prawns of 3.8% B.W. day−1, suggesting there is very little if any temperature effect on the feeding-growth relationship over the range studied. Fish fed twice or more each day consumed about 7.3 ± 1.4% B.W. day−1.
Given the biomass of this trevally in Albatross Bay, Gulf of Carpentaria, and the contribution of prawns to its diet, we estimate consumption of commercial prawns at 25 ± 5 g.ha−1 day−1 or 11 g kg−1 day−1.  相似文献   

14.
Body energy partitioning was examined for field-caught, adult walleye pollock; additional laboratory studies were conducted on fish held under controlled temperature conditions at Seward, Alaska.
Average consumption for pollock feeding daily was 0.5% of body weight (3100 cal) at 5°C, resulting in an average growth of 0.12% body weight day−1. These results suggest that large pollock grow at similar rates and have similar food conversion efficiencies to those of Atlantic cod held at similar temperatures.
Resting metabolic rates measured on adult fish were combined with similar data from juveniles to calculate a regression of specific metabolic rate against wet weight: y = 173x−026. Maintenance rations amounted to 4.8 cal g−1 day−1 at 5°C, very close to the 0.28% value for juveniles. Estimation of metabolic rate using maintenance ration data resulted in values that were 55% higher than those obtained from oxygen consumption data for unfed fish. Weight loss during starvation was 0.18% of body weight day−1 at 5°C, corresponding roughly to a starvation metabolic rate 50% lower than the resting metabolic rate we report.
We estimate that an adult pollock will lose about 37% of its prespawning body weight and about 46% of its body energy during spawning. These losses result, primarily, from changes in the weight of gonad, liver and somatic tissues as opposed to changes in specific energy content of those tissues.  相似文献   

15.
The interaction of temperature and fish size on growth of juvenile halibut   总被引:3,自引:0,他引:3  
Growth rate of individually tagged juvenile halibut was influenced significantly by the interaction of temperature and fish size. The results suggest an optimum temperature for growth of juvenile halibut in the size range 5–70 g between 12 and 15° C. Overall growth rate was highest at 13° C (1·62% day −1). At c. 5 g at the beginning of the experiment, fish at 16° C had the highest growth rate (3·2% day −1), but reduced this rate as they grew bigger. At 9 and 11°p C, growth rates were equal or only slightly lower during the later stages of the experiment, while the fish at 6° C showed significantly lower overall growth rate (0·87% day−1). Optimal temperature for growth decreased rapidly with increasing size, indicating an ontogenetic reduction in optimum temperature for growth. Moreover, a more flattened parabolic regression curve between growth and temperature as size increased indicated reduced temperature dependence with size. Although individual growth rates varied significantly at all times within the experimental temperatures, significant size rank correlations were maintained during the experiment. This indicated an early establishment of a stable size hierarchy within the fish groups. Haematocrit was highest at the highest temperature while Na+/K+-ATPase activity was inversely related to temperature. There was no difference in plasma Na+, Cl and K+ concentrations among the temperature groups.  相似文献   

16.
The movement of 34 large (39–73 cm standard length) brown trout Salmo trutta was monitored using radio telemetry for up to 74 days in Brumunda, a small Norwegian river (mean annual discharge 3·3 m3 s−1) flowing into the large Lake Mjøsa. The maximum range of movement in the river was 20 km. No clear relationships existed between individual movement and water discharge, temperature and barometric pressure. Brown trout migrated at all levels of water discharge. At low discharge (<2 m3 s−1) movements were nocturnal. A weir 5·3 km from the outlet restricted ascending brown trout at low ( c . 6° C), but not at high ( c . 8° C) water temperatures. Spawning occurred in September to October and tagged individuals spent 2–51 days at the spawning sites. Mean migration speed from tagging to when the fish reached the spawning area, and from when they left the spawning areas and reached the lake was 1·0 and 2·3 km day−1, respectively. All tagged brown trout that survived spawning returned to the lake after spawning.  相似文献   

17.
The effects of temperature and size on growth and mortality of cod larvae   总被引:3,自引:0,他引:3  
The optimal temperatures for growth of four groups of hatchery-reared cod larvae (geometric mean weight: 73, 191, 249 and 251 μg), reared on rotifers at four or five constant temperatures between 4 and 16° C for 14, 12, 9 and 16 days were 9.7, 12.3, 12.7 and 13.4° C, respectively. The maximum growth rate also increased with size and was 6.5, 9.6, 11.7 and 11.3% day−1 for the respective size groups. The optimal temperature for survival was 8.5–8.8° C for all size groups. The results indicate an opposite relationship between (1) size and optimal temperature for growth and (2) size and maximum growth rate of cod larvae, to that observed for juvenile and immature cod.  相似文献   

18.
SUMMARY. 1. Newly-laid eggs of Coenagrion puella (L.) from a pond near Herzogenburg (Lower Austria) were kept at constant water temperatures (range c .3.5°C to c .28°C)in the laboratory. Hatching success varied with temperature; no eggs hatched below 12°C and nearly all hatched at c .l6°C. Hatching time decreased with increasing temperature and the relationship between the two variables within the range 12–28 °C was well described by a power law. The length of the hatching period was less than 12 days. Hatching times estimated from the power-law equations and those obtained in the field experiments were similar. Therefore both the hatching time and the length of the hatching period in the field could be estimated from the laboratory data for the range 12–28°C.
2. The maximum number of instars from egg to imago was 11; the average body length increment (mm) per moult was proportionately constant at c .26% and Dyar's rule was applicable. The interval between moults decreased with increasing temperature up to the seventh instar and the relationship between the two variables within the range 12–28°C was well described by a power law. The moulting interval for instars 8–11 ranged from 23 to 48 days and was relatively independent of temperature. No moulting occurred at temperatures below 12°C.
3. Larval growth was logistic in the laboratory and variations in mean logistic growth rate (range 0–2.5% length day−1) were related to mean temperature with no growth at temperatures <12°C. Larval growth rates in pond experiments were similar to those estimated from laboratory data, and therefore the regression equations obtained from the laboratory experiments are probably applicable to larval growth in the field.
4. Information on the life cycle of C. puella is briefly reviewed and it is concluded that C. puella from the pond near Herzogenburg has an univoltine life cycle.  相似文献   

19.
Phytoplankton ecology in an Antarctic lake   总被引:4,自引:0,他引:4  
SUMMARY. The ecology of the phytoplankton of Heywood Lake, Signy Island, South Orkney Islands, Antarctica was investigated during 1969–72. The lake, which is ice-covered for 8–10 months per year, is moderately eutrophic due to enrichment by seal excreta.
The annual cycle of the phytoplankton is described. During the winter (approximately May-September), very few algal cells could be detected in the water column and 14C fixation was below measurable limits. In spring (October-November), a rapidly-growing population of algae caused a large increase in the chlorophyll- a concentration (maximum value 170 mg m−2) but carbon fixation remained low, with values <500 mg C m−2 day−1. The algae contributing to this peak were mainly small chlorophytes and chrysophytes. The summer open-water period (December-March) was characterized by a different phytoplankton population dominated by cryptophytes. Chlorophyll levels were lower ( c . 40 mg m−2) but 14C fixation rates >3 g C m−2 day−1 were measured on bright days. Values for Assimilation Number were very high (maximum value 10.5 mg C h−1 mg−1 (chlorophyll- a ) in January (1971) though temperatures never exceeded 8°C. In autumn, the phytoplankton regressed to winter levels. Both spring and summer algal populations probably overwinter as resting stages.  相似文献   

20.
SUMMARY 1. Grazing and photosynthetic contributions to the carbon balance of planktonic, mixotrophic cryptophytes in Lakes Fryxell and Hoare in the Taylor Valley, Antarctica were measured during November and December 2000.
2. The cryptophytes never became entirely photosynthetic, although carbon derived from grazing decreased in December. Individual grazing rates ranged between 5.28 and 10.08 bacteria cell−1 day−1 in Lake Fryxell and 0.36–11.76 bacteria cell−1 day−1 in Lake Hoare. Grazing rates varied temporally and with depth in the water column. In Lake Fryxell, which is a meromictic lake, highest grazing occurred just above the chemocline. Individual photosynthetic rates ranged from 0.23 to 1.35 pg C cell−1 h−1 in Lake Fryxell and 0.074 to 1.08 pg C cell−1 h−1 in Lake Hoare.
3. Carbon acquisition by the cryptophyte community gained through grazing ranged between 8 and 31% during November in Lake Fryxell, dropping to between 2 and 24% in December. In Lake Hoare grazing contributed 12–21% of the community carbon budget in November and 1–28% in December. Around 4% of the carbon acquired from grazing and photosynthesis was remineralised through respiration.
4. Mixotrophy is probably a major survival strategy for cryptophytes in the extreme lakes of the Dry Valleys, because perennial ice-cover severely limits light penetration to the water column, whereas these phytoflagellates are not normally mixotrophic in lower latitude lakes. The evidence suggests that mixotrophy may be a mechanism for supplementing the carbon budget, as well as a means of acquiring nutrients for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号