首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphofructokinase (PFK) from sheep heart was shown to be phosphorylated by Ca2+/calmodulin protein kinase (CaM-kinase) as well as by cyclic AMP-dependent protein kinase (PKA). HPLC analysis of phosphorylated PFK indicated that phosphorylation by CaM-kinase occurs at least at two sites that are distinct from those recognized by PKA. Phosphorylation by either CaM-kinase of PKA resulted in an increase in sensitivity to ATP inhibition and a small but consistent decrease in Ki for ATP. Phosphorylation by either protein kinase caused a slight increase in the Km of PFK for fructose-6-P. Protein kinase C failed to phosphorylate PFK. Combinations of PKA, CaM-kinase and protein kinase C did not alter the stoichiometry of phosphorylation and did not change the effect on enzyme activity.  相似文献   

2.
3.
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM.  相似文献   

4.
Postsynaptic density protein‐95 (PSD‐95) localizes AMPA‐type glutamate receptors (AMPARs) to postsynaptic sites of glutamatergic synapses. Its postsynaptic displacement is necessary for loss of AMPARs during homeostatic scaling down of synapses. Here, we demonstrate that upon Ca2+ influx, Ca2+/calmodulin (Ca2+/CaM) binding to the N‐terminus of PSD‐95 mediates postsynaptic loss of PSD‐95 and AMPARs during homeostatic scaling down. Our NMR structural analysis identified E17 within the PSD‐95 N‐terminus as important for binding to Ca2+/CaM by interacting with R126 on CaM. Mutating E17 to R prevented homeostatic scaling down in primary hippocampal neurons, which is rescued via charge inversion by ectopic expression of CaMR126E, as determined by analysis of miniature excitatory postsynaptic currents. Accordingly, increased binding of Ca2+/CaM to PSD‐95 induced by a chronic increase in Ca2+ influx is a critical molecular event in homeostatic downscaling of glutamatergic synaptic transmission.  相似文献   

5.
A soluble Ca2+/calmodulin dependent protein kinase has been partially purified (~400 fold) from Mycobacterium smegmatis ATCC 607 using several purification steps like ammonium sulphate precipitation (30-60%), Sepharose CL-6B gel filtration, DEAE-cellulose and finally calmodulin-agarose affinity chromatography. On SDS-PAGE, this enzyme preparation showed a major protein band of molecular mass 35 kD and its activity was dependent on calcium, calmodulin and ATP when measured under saturating histone IIs (exogenous substrate) concentration. Phosphorylation of histone IIs was inhibited by W-7 (calmodulin inhibitor) and KN-62 (CaM-kinase inhibitor) with IC50 of 1.5 and 0.25 m respectively, but was not affected by inhibitors of PKA (Sigma P5015) and PKC (H-7). All these results confirm that purified enzyme is Ca2+/ calmodulin dependent protein kinase of M. smegmatis. The protein kinase of M. smegmatis demonstrated a narrow substrate specificity for both exogenous as well as endogenous substrates. These results suggest that purified CaM-kinase must be involved in regulating specific function(s) in this organism.  相似文献   

6.
7.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

8.
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER–PM contacts via CaM binding.  相似文献   

9.
The Ca2+/calmodulin system in neuronal hyperexcitability   总被引:17,自引:0,他引:17  
Calmodulin (CaM) is a major Ca2+-binding protein in the brain, where it plays an important role in the neuronal response to changes in the intracellular Ca2+ concentration. Calmodulin modulates numerous Ca2+-dependent enzymes and participates in relevant cellular functions. Among the different CaM-binding proteins, the Ca2+/CaM dependent protein kinase II and the phosphatase calcineurin are especially important in the brain because of their abundance and their participation in numerous neuronal functions. Therefore, the role of the Ca2+/CaM signalling system in different neurotoxicological or neuropathological conditions associated to alterations in the intracellular Ca2+ concentration is a subject of interest. We here report different evidences showing the involvement of CaM and the CaM-binding proteins above mentioned in situations of neuronal hyperexcitability induced by convulsant agents. Signal transduction pathways mediated by specific CaM binding proteins warrant future study as potential targets in the development of new drugs to inhibit convulsant responses or to prevent or attenuate the alterations in neuronal function associated to the deleterious increases in the intracellular Ca2+ levels described in different pathological situations.  相似文献   

10.
Binding of Ca2+ to calmodulin has been simulated on the basis of a model that assumes two classes, two sites in each class, of Ca2+ binding sites. With properly chosen values of binding constants for the two classes of sites, and with the assumption that certain degree of positive cooperativity exists between the two sites in each class, the overall binding isotherm can be generated so that it appears to be a single-transition, non-cooperative binding curve of four equivalent sites. Thus this model offers a resolution for some of the discrepancies among Ca2+ binding studies of calmodulin.  相似文献   

11.
The second messenger molecules cAMP and Ca2+ regulate a large number of eukaryotic cellular events. cAMP acts on protein kinases and Ca2+ works through a ubiquitous calcium-binding protein, calmodulin. The two systems are not independent, however, but interact in several important fashions. These interactions, and, in particular, the modulation of the cAMP signal by two Ca2+/calmodulin-regulated proteins, cyclic nucleotide phosphodiesterase and calcineurin, are described here.  相似文献   

12.
Myocyte enhancer factor 2 (MEF2) proteins play a pivotal role in the differentiation of cardiac and skeletal muscle cells. MEF2 factors are regulated by histone deacetylase enzymes such as histone deacetylase 5 (HDAC5). HDAC5 in turn is responsive to Ca(2+) signaling mediated by the intracellular calcium sensor calmodulin. Here a combination of proteolytic fragmentation, matrix-assisted laser desorption ionization mass spectrometry, Edman degradation, circular dichroism, gel filtration, and surface plasmon resonance studies is utilized to define and characterize a stable core domain of HDAC5 and to examine its interactions with MEF2a and calmodulin. Results from real time binding experiments provide evidence for direct interaction of Ca(2+)/calmodulin with HDAC5 inhibiting MEF2a association with this enzyme.  相似文献   

13.
Ras-related small GTP-binding proteins execute many cellular functions, such as cell growth, differentiation, cytoskeletal reorganization, membrane trafficking, and membrane fusion. RalA belongs to the superfamily of Ras-related small GTP-binding proteins. Synaptic vesicles (SV) contain small GTP-binding proteins, where RalA, Rab3A, and Rab5A are the major GTP-binding proteins. It has been postulated that a cycling of these proteins between membrane-bound and soluble states is required for regulating cellular functions. Calmodulin (CaM) was found to dissociate Rab3A from SV membranes by forming a 1:1 complex with Ca2+/CaM. RalA was also found to be a Ca2+/CaM-binding protein. Therefore, we examined if Ca2+/CaM can also cause the RalA to dissociate from SV membranes. In this study, we identified that Ca2+/CaM dissociates RalA as well as Rab3A from synaptic vesicles.  相似文献   

14.
P-57 is a neural-specific calmodulin binding protein with novel calmodulin binding properties. P-57 exhibits higher affinity for calmodulin-Sepharose in the absence of free Ca2+ than in the presence of Ca2+ (Andreasen, T.J., Luetje, C.W., Heideman, W. & Storm, D.R. (1983) Biochemistry 22, 4615-4618; Cimler, B. M., Andreasen, T.J., Andreasen, K.I. & Storm, D.R. (1985) J. Biol. Chem. 260, 10784-10788). In this study, the dissociation constants for P-57 and immunopurified 5-[[(iodoacetylamino)ethyl]-amino]-1-naphthalenesulfonic acid-labeled calmodulin (AEDANS-CaM) were determined under low and high ionic strength conditions. In the absence of added KCl, the dissociation constants for the P-57 X AEDANS-CaM complex were 2.3 X 10(-7) +/- 6 X 10(-8) M and 1.0 X 10(-6) +/- 3 X 10(-7) M in the presence and absence of excess Ca2+ chelator. The addition of KCl to 150 mM increased the Ca2+-independent and -dependent dissociation constants to 3.4 X 10(-6) +/- 9 X 10(-7) M and 3.0 X 10(-6) +/- 9 X 10(-7) M, respectively. The association of P-57 with AEDANS-CaM under low Ca2+ conditions was determined as a function of KCl concentrations. By taking into account the amount of P-57 found in brain and its affinity for calmodulin, it is concluded that most or all of the CaM would be complexed to P-57 in unstimulated cells. P-57 was phosphorylated by the Ca2+-phospholipid-dependent protein kinase (protein kinase C) with a phosphate:protein molar ratio of 1.3. Phosphoamino acid analysis demonstrated phosphorylation at a serine residue. CaM decreased the rate of phosphorylation of P-57 by protein kinase C, and phosphorylation prevented P-57 binding to calmodulin-Sepharose. P-57 was not phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase. It is proposed that P-57 binds and localizes calmodulin at specific sites within the cell and that free calmodulin is released locally in response to phosphorylation of P-57 by protein kinase C and/or to increases in intracellular free Ca2+. This regulatory mechanism, which appears to be specific to brain, would serve to decrease the response time for Ca2+-calmodulin-regulated processes.  相似文献   

15.
We have investigated the interaction of calmodulin (CaM) with Ras-p21 and the significance of this association. All Ras-p21 isoforms tested (H-, K-, and N-Ras) were detected in the particulate fraction of human platelets and MCF-7 cells, a human breast cancer cell line. In MCF-7 cells, H- and N-Ras were also detected in the cytosolic fraction. K-RasB from platelet and MCF-7 cell lysates was found to bind CaM in a Ca2+ -dependent but GTPgammaS-independent manner. The yeast two-hybrid analysis demonstrated that K-RasB binds to CaM in vivo. Incubation of isolated membranes from platelet and MCF-7 cells with CaM caused dissociation of only K-RasB from membranes in a Ca2+ -dependent manner. CaM antagonist, W7, inhibited dissociation of K-RasB. Addition of platelet or MCF-7 cytosol alone to isolated platelet membranes did not cause dissociation of K-RasB and only addition of exogenous CaM caused dissociation. The results suggest a potential role for Ca2+/CaM in the regulation of K-RasB function.  相似文献   

16.
TRPV1 ion channels mediate the response to painful heat, extracellular acidosis, and capsaicin, the pungent extract from plants in the Capsicum family (hot chili peppers) (Szallasi, A., and P.M. Blumberg. 1999. Pharmacol. Rev. 51:159-212; Caterina, M.J., and D. Julius. 2001. Annu. Rev. Neurosci. 24:487-517). The convergence of these stimuli on TRPV1 channels expressed in peripheral sensory nerves underlies the common perceptual experience of pain due to hot temperatures, tissue damage and exposure to capsaicin. TRPV1 channels are nonselective cation channels (Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, and D. Julius. 1997. Nature. 389:816-824). When activated, they produce depolarization through the influx of Na+, but their high Ca2+ permeability is also important for mediating the response to pain. In particular, Ca2+ influx is thought to be required for the desensitization to painful sensations over time (Cholewinski, A., G.M. Burgess, and S. Bevan. 1993. Neuroscience. 55:1015-1023; Koplas, P.A., R.L. Rosenberg, and G.S. Oxford. 1997. J. Neurosci. 17:3525-3537). Here we show that in inside-out excised patches from TRPV1 expressed in Xenopus oocytes and HEK 293 cells, Ca2+/calmodulin decreased the capsaicin-activated current. This inhibition was not mimicked by Mg2+, reflected a decrease in open probability, and was slowly reversible. Furthermore, increasing the calmodulin concentration in our patches by coexpression of wild-type calmodulin with TRPV1 produced inhibition by Ca2+ alone. In contrast, patches excised from cells coexpressing TRPV1 with a mutant calmodulin did not respond to Ca2+. Using an in vitro calmodulin-binding assay, we found that TRPV1 in oocyte lysates bound calmodulin, although in a Ca2+-independent manner. Experiments with GST-fusion proteins corresponding to regions of the channel NH2-terminal domain demonstrated that a stretch of approximately 30 amino acids adjacent to the first ankyrin repeat bound calmodulin in a Ca2+-dependent manner. The physiological response to pain involves an influx of Ca2+ through TRPV1. Our results indicate that this Ca2+ influx may feed back on the channels, inhibiting their gating. This type of feedback inhibition could play a role in the desensitization produced by capsaicin.  相似文献   

17.
Ca(2+) and calmodulin modulate numerous cellular functions, ranging from muscle contraction to the cell cycle. Accumulating evidence indicates that Ca(2+) and calmodulin regulate the MAPK signaling pathway at multiple positions in the cascade, but the molecular mechanism underlying these observations is poorly defined. We previously documented that IQGAP1 is a scaffold in the MAPK cascade. IQGAP1 binds to and regulates the activities of ERK, MEK, and B-Raf. Here we demonstrate that IQGAP1 integrates Ca(2+) and calmodulin with B-Raf signaling. In vitro analysis reveals that Ca(2+) promotes the direct binding of IQGAP1 to B-Raf. This interaction is inhibited by calmodulin in a Ca(2+)-regulated manner. Epidermal growth factor (EGF) is unable to stimulate B-Raf activity in fibroblasts treated with the Ca(2+) ionophore A23187. In contrast, chelation of intracellular free Ca(2+) concentrations ([Ca(2+)](i)) significantly enhances EGF-stimulated B-Raf activity, an effect that is dependent on IQGAP1. Incubation of cells with EGF augments the association of B-Raf with IQGAP1. Moreover, Ca(2+) regulates the association of B-Raf with IQGAP1 in cells. Increasing [Ca(2+)](i) with Ca(2+) ionophores significantly reduces co-immunoprecipitation of B-Raf and IQGAP1, whereas chelation of Ca(2+) enhances the interaction. Consistent with these findings, increasing and decreasing [Ca(2+)](i) increase and decrease, respectively, co-immunoprecipitation of calmodulin with IQGAP1. Collectively, our data identify a previously unrecognized mechanism in which the scaffold protein IQGAP1 couples Ca(2+) and calmodulin signaling to B-Raf function.  相似文献   

18.
The binding of Ca2+ to calmodulin and its two tryptic fragments has been studied using microcalorimetry. The binding process is accompanied by the uptake or release of protons, depending on the ionic strength. With no added salt, the total enthalpy change for the binding of four calcium ions to calmodulin is -41 kJ mol-1 but in the presence of 0.15 mM KCl delta Htot is +17 kJ mol-1. The mode of binding of Ca2+ is also completely different with and without added salt. It is also shown that for the C-terminal fragment of calmodulin, TR2C, the drastic reduction in delta Gtot for the binding process on increasing the ionic strength is largely an enthalpic effect. Domain interactions in calmodulin are indicated by the fact that the sum of the enthalpies of calcium binding to the two tryptic fragments is not the same as the total binding enthalpy to calmodulin itself. The binding of Ca2+ to calmodulin has also been studied calorimetrically at different temperatures in the range 21-37 degrees C. delta Cp is large and negative in this interval.  相似文献   

19.
Although the sarcoplasmic reticulum (SR) is known to regulatethe intracellular concentration ofCa2+ and the SR function has beenshown to become abnormal during ischemia-reperfusion in theheart, the mechanisms for this defect are not fully understood. Becausephosphorylation of SR proteins plays a crucial role in the regulationof SR function, we investigated the status of endogenousCa2+/calmodulin-dependent proteinkinase (CaMK) and exogenous cAMP-dependent protein kinase (PKA)phosphorylation of the SR proteins in control, ischemic (I), andischemia-reperfused (I/R) hearts treated or not treated withsuperoxide dismutase (SOD) plus catalase (CAT). SR and cytosolicfractions were isolated from control, I, and I/R hearts treated or nottreated with SOD plus CAT, and the SR protein phosphorylation by CaMKand PKA, the CaMK- and PKA-stimulated Ca2+ uptake, and the CaMK, PKA,and phosphatase activities were studied. The SR CaMK andCaMK-stimulated Ca2+ uptakeactivities, as well as CaMK phosphorylation ofCa2+ pump ATPase (SERCA2a) andphospholamban (PLB), were significantly decreased in both I and I/Rhearts. The PKA phosphorylation of PLB and PKA-stimulatedCa2+ uptake were reducedsignificantly in the I/R hearts only. Cytosolic CaMK and PKA activitieswere unaltered, whereas SR phosphatase activity in the I and I/R heartswas depressed. SOD plus CAT treatment prevented the observedalterations in SR CaMK and phosphatase activities, CaMK and PKAphosphorylations, and CaMK- and PKA-stimulated Ca2+ uptake. These resultsindicate that depressed CaMK phosphorylation and CaMK-stimulatedCa2+ uptake in I/R hearts may bedue to a depression in the SR CaMK activity. Furthermore, prevention ofthe I/R-induced alterations in SR protein phosphorylation by SOD plusCAT treatment is consistent with the role of oxidative stress duringischemia-reperfusion injury in the heart.

  相似文献   

20.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号