首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A single gene encodes multiple neuropeptides mediating a stereotyped behavior   总被引:20,自引:0,他引:20  
Egg laying in Aplysia is characterized by a stereotyped behavioral array which is mediated by several neuroactive peptides. We have sequenced two genes encoding the A and B peptides thought to initiate the egg-laying process, as well as a gene encoding egg-laying hormone (ELH) which directly mediates the behavioral array. The three genes share 90% sequence homology and are representatives of a small multigene family. Each gene encodes a protein precursor in which the active peptides are flanked by internal cleavage sites providing the potential to generate multiple small peptides. Each of the three genes consists of sequences homologous to A or B peptide as well as ELH. Although these genes share significant nucleotide homology, they have diverged such that different member genes express functionally related but nonoverlapping sets of neuroactive peptides in different tissues.  相似文献   

2.
The bag cells of the marine mollusk Aplysia express a gene encoding a 271-residue egg-laying hormone (ELH) precursor that is processed into at least nine peptide products. Four of the peptides have been identified in bag cell releasates and are known to act as nonsynaptic neurotransmitters in the abdominal ganglion. The isolation, primary structure, and proposed biological activity of a fifth peptide product (delta-bag cell peptide (delta-BCP)) from the ELH precursor are described. delta-BCP was established to be a 39-residue peptide: NH2-Asp-Gln-Asp-Glu-Gly-Asn-Phe-Arg-Arg-Phe-Pro-Thr-Asn-Ala-Val-Ser-Met- Ser-Ala-Asp- Glu-Asn-Ser-Pro-Phe-Asp-Leu-Ser-Asn-Glu-Asp-Gly-Ala-Val-Tyr-Gln-Arg- Asp-Leu-COOH. This sequence corresponds to residues 81-119 of the ELH prohormone and shares sequence identity with atrial gland peptides A and B. Significantly, synthetic delta-BCP stimulated Ca2+ uptake into mitochondria of secretory cells in the albumin gland in vitro, suggesting that the peptide regulates the cellular release of perivitelline fluid by the gland. Similar results were obtained with purified peptide A and a shorter version of delta-BCP (delta-BCP-(14-33)). These results indicate that delta-BCP belongs to a family of structurally related peptides with similar pharmacological activities that center at a conserved region of sequence corresponding to delta-BCP-(14-33).  相似文献   

3.
Endogenous peptides induce egg laying in the marine mollusc Aplysia in two ways: egg-laying hormone (ELH) from the neuroendocrine bag cells acts directly, causing the release of eggs from the ovotestis; peptides A and B from the atrial gland act indirectly, activating the bag cells to release ELH. Another atrial gland peptide (egg-releasing hormone; ERH) is a structural and functional hybrid of ELH and peptides A and B; it can act both directly and indirectly to induce egg laying. Atrial glands were incubated in a mixture of 3H-amino acids for 18 h, and the biosynthetically labelled peptides isolated using sequential Sephadex G-50 column chromatography and isoelectric focusing. Radiolabelled peaks were localized and bioassayed in intact animals. Bioactive peaks were then characterized functionally using two additional assays: egg laying in bag cell-less animals (ELH-like peptides) and in vitro induction of bag cell discharge (A- and B-like peptides). ERH-like molecules are active in both assays. Homogeneity of bioactive IEF peaks was assessed by SDS-PAGE. Sephadex G-50 gel filtration of biosynthetically labelled atrial gland extracts reveals two major peptide peaks. Peak D (apparent Mr 6,000) is strongly radiolabelled and contains most of the egg-laying activity, but has a low absorbance at 274 nm. Peak E (apparent Mr 3,500) is weakly labelled and contains a small proportion of the total egg-laying activity, but has a large absorbance at 274 nm. Isoelectric focusing of radiolabelled peptides in peak D reveals seven distinct ELH-like species (pI 5.5, 7.5, 8.5, 8.7, 8.9, 9.1, 9.4), and two peaks (pI 5.9, 8.1) that have both ELH-like and A-/B-like activity. The pI 8.1 peak may result from the comigration of peptide A with ERH or with an unidentified ELH-like peptide. It is not yet clear whether the pI 5.9 activity results from comigration of distinct peptides or from the presence of a previously uncharacterized ERH-like molecule. Isoelectric focusing of radiolabelled peptides in peak E reveals five distinct ELH-like species (pI 7.3, 8.5, 8.7, 9.1, 9.4), and one peak (pI 8.9) with both ELH-like and A-/B-like activity. The pI 8.9 peak may result from the comigration of an ELH-like peptide with peptide B. Three of the ELH-like peptides (pI 8.5, 8.9, 9.1) found in peak E are probably identical to the ELH-like peptides found at the same pI's in peak D.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
J M Fisher  W Sossin  R Newcomb  R H Scheller 《Cell》1988,54(6):813-822
The ELH prohormone is proteolytically processed into at least nine peptides which govern egg-laying behavior in Aplysia. Quantitative immunocytochemistry demonstrates that peptides derived from the prohormone are packaged into distinct vesicle classes. Further experiments suggest the segregation occurs via a rapid initial proteolytic cleavage of the prohormone followed by sorting at the trans Golgi. Egg-laying hormone (ELH) immunoreactivity is localized to the cell body and processes, while bag cell peptide (BCP) immunoreactivity is greater in the cell body. Steady state levels of the amino-terminal set of peptides including the BCPs are 3- to 8-fold lower than the carboxy-terminal cleavage products, such as ELH. Thus, intracellular packaging and routing of the peptides cleaved from a single prohormone regulate their localization and levels in these neurons.  相似文献   

5.
The atrial gland of the marine mollusk Aplysia californica contains several biologically active peptides that are thought to be important in reproductive function. In the present study, three novel peptides, which we named califin A, B, and C, were purified from extracts of atrial glands by high performance liquid chromatography, and their primary structures were determined. Each consists of a 36-residue subunit bound by a single disulfide bond to an 18-residue subunit. The large subunits differ from each other by one or two residues, whereas the small subunits are identical. The large subunits are 78-83% homologous to egg-laying hormone (ELH), a 36-residue peptide synthesized by the neuroendocrine bag cells of Aplysia. Like ELH, the califins excite LB and LC cells of the abdominal ganglion and cause egg laying when injected into sexually mature animals. Based on previously described DNA sequence data, each califin is likely to be derived from one of several precursor proteins that are encoded by members of the ELH gene family. Califin A is encoded on the peptide A precursor, and califin B may be encoded on the peptide B precursor. No gene encoding califin C has been sequenced. Because peptides A and B are also biologically active, the precursors encoding them and califins A and B are polyproteins. The possible role of atrial gland peptides as pheromones is discussed.  相似文献   

6.
7.
Egg laying in the marine molluscan genus Aplysia is elicited by an egg-laying hormone (ELH) which induces ovulation and acts on central neurons to effect egg-laying behavior. ELH, isolated from the A. californica bag cells, and three ELH-related peptides, isolated from the A. californica atrial gland, have been chemically characterized, yet relatively little is known about homologous peptides in other Aplysia species. In these studies, the primary structure of A. brasiliana ELH was determined. Bag cell clusters were extracted in an acidic solution, and the peptides purified by sequential gel filtration and reversed-phase HPLC; ELH was identified by bioassay. Amino acid compositional and sequence analyses demonstrated that the neurohormone was a 36-residue peptide whose sequence was identical to that of A. californica ELH: NH2-Ile-Ser-Ile-Asn-Gln-Asp-Leu-Lys-Ala-Ile-Thr-Asp-Met-Leu-Leu-Thr-Glu- Gln-Ile- Arg-Glu-Arg-Gln-Arg-Tyr-Leu-Ala-Asp-Leu-Arg-Gln-Arg-Leu-Leu-Glu-Lys-COOH .  相似文献   

8.
9.
The atrial gland of the marine mollusk Aplysia californica is an exocrine organ that expresses at least three genes belonging to the egg-laying hormone (ELH) family. In order to study the post-translational processing of the ELH-related gene products in the atrial gland and how it compares to the bag cells, peptides were isolated from the atrial gland and chemically characterized. The A- and B-related precursors were each cleaved in vivo to yield several major and minor peptides including peptides A and B and the ELH-related peptide complexes that caused egg laying. About 13% of the peptide complexes were further enzymically processed by the atrial gland to yield smaller fragments, which included A-AP.A-ELH-(15-36), A-AP.[Ala27]A-ELH-(15-36), and A-AP.[Gln23,Ala27]A-ELH-(16-36), where A-AP is an acidic peptide encoded by the A- and B-related genes and A-ELH is an ELH-related peptide encoded by the A gene. These processed peptide fragments were not active in an egg-laying bioassay, indicating that retention of the 14-residue NH2-terminal segment of the A-ELH-related sequence, or some portion thereof, was critical for the induction of egg laying. Other characterized peptides included two novel 13-residue NH2-terminal peptides, A-NTP and B-NTP, representing residues 22-34 of the A and B precursors, respectively. These two peptides occurred adjacent to the signal peptide region in each precursor, and their characterization established the site of signal peptide cleavage to be the Ser21-Gln22 peptide bond of each precursor. Intermediate peptide fragments (A-NTP-peptide A and B-NTP-peptide B) were also identified indicating that there was a specific ordering in the cleavage of peptide bonds during posttranslational processing. Finally, a new 55-residue atrial gland peptide was also isolated that was not a part of any ELH-related precursor characterized to date.  相似文献   

10.
11.
Three peptide complexes which can induce egg laying in Aplysia were isolated from the atrial gland of the marine mollusc Aplysia californica and chemically characterized. Amino acid sequence analyses established the covalent structures, including disulfide assignments, of all three dimeric complexes. Each complex consisted of an identical 18-residue peptide (A-AP) which was disulfide-bonded to a 36-residue peptide that was homologous to bag cell egg-laying hormone (ELH). The primary structure of A-AP was determined to be: NH2-Asp-Ser-Asp-Val-Ser-Leu-Phe-Asn-Gly-Asp-Leu-Leu-Pro-Asn-Gly-Arg-Cys- Ser-COOH. The primary structure of one of the three ELH-related peptides (A-ELH) was determined to be NH2-Ile-Ser-Ile-Asn-Gln-Asp-Leu-Lys-Ala-Ile-Thr-Asp-Met-Leu-Leu-Thr-Glu- Gln-Ile-Gln-Ala-Arg-Arg-Arg-Cys-Leu-Asp-Ala-Leu-Arg-Gln-Arg-Leu-Leu-Asp- -Leu-COOH. The two other ELH-related peptides, [Ala27]A-ELH and [Gln23, Ala27]A-ELH, differed from A-ELH at 1 and 2 residues, respectively. Both [Ala27] A-ELH and [Gln23, Ala27]A-ELH were novel peptide sequences representing products of as yet uncharacterized genes within the ELH family. These structural studies provide the first direct chemical evidence that an 18-residue peptide (A-AP) derived from a polypeptide precursor encoded by the A gene, as predicted from nucleotide sequence analysis, occurs in the atrial gland; the Cys17 residue of A-AP is disulfide-bonded to Cys25 of A-ELH; and A-AP also occurs disulfide-bonded to two additional, previously undescribed ELH-related peptides, [Ala27]A-ELH and [Gln23, Ala27]A-ELH.  相似文献   

12.
The abdominal ganglion of Aplysia provides a convenient experimental system for cellular studies on the roles of peptides as chemical messengers in the nervous system. There are indications that the bag cells, a group of neuroendocrine cells, synthesize and release egg laying hormone (ELH), a peptide with an apparent molecular weight of 6000. Our recent investigations indicate that a burst of impulse activity in the bag cells produces five types of long-lasting responses, some excitatory, others inhibitory, in 26 identified neurons and 2 identified cell clusters located near the bag cells in the abdominal ganglion. The responses have slow, smoothly graded onsets, and many of them result in modulation of neuronal activity for 3 hours or more. Physiological and ultrastructural data support the hypothesis that they are induced by a bag cell hormone (or hormones) that is released into vascular and interstitial spaces of the ganglion to act on the target neurons. Local application of purified ELH to one of the target neurons provides evidence that the bag cell effect is mediated by ELH. Many of the target neurons are known to be parts of neuronal circuits that control specific behavioral and homeostatic processes. Since egg laying is initiated by the bag cell discharge and is associated with a stereotyped behavior pattern lasting several hours, the actions of these peptide-secreting neurons on the central nervous system may serve to regulate certain elements of behavior and homeostasis during egg laying.  相似文献   

13.
14.
15.
16.
17.
18.
L B Buck  J M Bigelow  R Axel 《Cell》1987,51(1):127-133
The neuron R15 is a peptidergic cell within the abdominal ganglion of Aplysia that participates in two neural circuits governing physiological and behavioral programs. We have cloned and characterized the major gene product expressed in this neuron. The R15 cDNA encodes a polyprotein precursor that is cleaved to yield a set of small neuropeptides. One peptide, R15 alpha 1, may act on different target cells to generate distinct but complementary physiological alterations that contribute to a program of cardiovascular changes in Aplysia. We have found that the RNA encoding the R15 polyprotein is spliced differently in different neurons. Our results suggest that alternative splicing of RNAs encoding polyproteins may provide a mechanism to generate distinct but overlapping sets of peptides that govern distinct but related physiological or behavioral programs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号