首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
阿魏蘑多糖理化性质及免疫活性研究*   总被引:1,自引:0,他引:1  
甘勇  吕作舟 《菌物学报》2001,20(2):228-232
以阿魏蘑Pleurotus ferulae Lanzi子实体和菌丝体为试验材料,采用水浸法提取阿魏蘑多糖,分别得到子实体粗多糖A和菌丝体粗多糖B。将A经Sevag法去蛋白、透析、CTAB络合、乙醇沉淀、NaCl溶液溶解、透析,得到多糖A1。紫外光谱分析鉴定多糖A1为均一组分。苯酚—硫酸法测得多糖A1糖含量为82.9%。凝胶渗透色谱法测得多糖A1数均分子量Mn=141088,重均分子量Mw=142897。气相色谱分析多糖A1单糖组成及其摩尔比为Xyl∶Gla∶Glc=1∶1.102∶2.899。巨噬细胞吞噬作用试验、迟发型变态反应试验、白细胞介素-2(IL-2)的诱生与检测试验测得粗多糖A、粗多糖B具有免疫活性。  相似文献   

2.
Chen S  Xu J  Xue C  Dong P  Sheng W  Yu G  Chai W 《Glycoconjugate journal》2008,25(5):481-492
A non-sulfated polysaccharide was isolated from the ink sac of squid Ommastrephes bartrami after removal of the melanin granules. The carbohydrate sequence of this polysaccharide was assigned by negative-ion electrospray tandem mass spectrometry with collision-induced dissociation of the oligosaccharide fractions produced by partial acid hydrolysis of the polysaccharide. The structural determination was completed by NMR for assignment of anomeric configuration and confirmation of linkage information and it was unambiguously identified as a glycosaminoglycan-like polysaccharide containing a glucuronic acid-fucose (GlcA-Fuc) disaccharide repeat in the main chain and a N-acetylgalactosamine (GalNAc) branch at Fuc position 3: -[3GlcAbeta1-4(GalNAcalpha1-3)Fucalpha1](n)-. Partial hydrolysis of the polysaccharide to obtain several oligosaccharide fractions with different numbers of the repeating unit assisted the assignment. In the negative-ion tandem mass spectrometric analysis, the unique (0,2)A type fragmentation was important to establish the presence of a 4-linked fucose in the main polysaccharide chain and a GalNAc branch at the Fuc position-3 of the disaccharide repeat.  相似文献   

3.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

4.
淡紫拟青霉胞外多糖的分离、纯化及结构分析   总被引:4,自引:0,他引:4  
淡紫拟青霉NH-PL-03菌株的胞外多糖粗提物对枯萎病病原菌-尖孢镰刀菌具有较好的抑制效果,文中对淡紫拟青霉胞外多糖进行了分离纯化和结构分析,以期为其构效关系研究奠定基础。采用乙醇沉淀法从淡紫拟青霉发酵液中提取粗多糖,经Sevage法脱蛋白后,过Superdex-G75凝胶层析柱分离得到胞外多糖EP-1。紫外分光法和Sephacryl S-200 HR凝胶层析柱检测EP-1为均一多糖,Sephacryl S-200柱层析测得EP-1的分子量为35.2 kDa,完全酸水解后纸层析检测EP-1的单糖组成中仅有葡萄糖,红外光谱、高碘酸氧化和Smith降解结果表明EP-1的化学结构是以β-(1,3)糖苷键连接而成的无分枝的葡聚糖。刚果红络合试验表明EP-1在稀的碱溶液中以3股螺旋构象存在。  相似文献   

5.
The nature of the polysaccharide molecules of the human enteric pathogen Campylobacter jejuni has been the subject of debate. Previously, C. jejuni 81116 was shown to contain two different polysaccharides, one acidic (polysaccharide A) and the other neutral (polysaccharide B), occurring in a 3 : 1 ratio, respectively. The aim of this study was to determine the molecular origin of these polysaccharides. Using a combination of centrifugation, gel permeation chromatography, chemical assays, and (1)H-NMR analysis, polysaccharide B was shown to be derived from lipopolysaccharide and polysaccharide A from capsular polysaccharide. Thus, C. jejuni 81116 produces both lipopolysaccharide-like molecules and capsular polysaccharide.  相似文献   

6.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O4 lipopolysaccharide followed by GPC. The polysaccharide was studied by chemical methods along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H,13C HMQC, and 1H,13C HMBC experiments. Solvolysis of the polysaccharide with trifluoromethanesulfonic (triflic) acid resulted in a GlcpA-(1 --> 3)-GlcNAc disaccharide and a novel amino sugar derivative, 4,6-dideoxy-4-[N-[(R)-3-hydroxybutyryl]-L-alanyl]amino-D-glucose [Qui4N(HbAla)]. On the basis of the data obtained, the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established: --> 4)-beta-D-GlcpA-(1 --> 3)-beta-D-GlcpNAc-(1 --> 2)-beta-D-Quip4N(HbAla)-(1 --> 3)-alpha-D-Galp-(1 -->. This structure is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied in a separate Proteus serogroup.  相似文献   

7.
A water-soluble neutral polysaccharide (GLP-F1-1) was isolated from the fruiting bodies of Ganoderma lucidum by DEAE Sepharose Fast Flow and Sephacryl S-500 High Resolution Chromatography. The neutral polysaccharide had an average molecular weight (Mw) of approximately 2.5×10(6) kDa. GC analysis showed that this polysaccharide was mainly composed of glucose and galactose in the molar ratio of 34:1. 1H and 13C NMR spectroscopy in combination with GC-MS technique indicated that the new polysaccharide had a backbone chain of 1,4-disubstituted-β-glucoseopyranose and 1,4,6-trisubstituted-β-glucoseopyranosyl, while the branched chains were mainly composed of 1,6-disubstituted-β-glucopyranosyl and 1,4-disubstituted-β-galactoseopyranosyl residues.  相似文献   

8.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

9.
Structural studies were carried out on an O-antigenic polysaccharide moiety derived from Porphyromonas circumdentaria NCTC 12469, a reference strain of Porphyromonas species. The polysaccharide chain was composed of D-glucose, D-galactose, N-acetyl-D-glucosamine, and N-acetyl-D-galactosamine in a molar ratio of 1:2:1:1. On the basis of results from 1H- and 13C-NMR spectroscopic analyses including COSY, TOCSY, and HMQC experiments together with results of Smith degradation, methylation analysis, and partial acid hydrolysis, it is concluded that the polysaccharide chain has a pentasaccharide repeating unit of -->6)-beta-D-Glcp-(1-->6)-beta-D-Galp-(1-->3)-beta-D-GlcpNAc-(1-->3)-beta-D-GalpNAc-(1-->. The immunoreaction between P. circumdentaria LPS and the corresponding antiserum was strongly inhibited by the pentasaccharide fragment (Glc-Gal-Gal-GlcNAc-GalNAc) isolated from partial acid hydrolysis of the above polysaccharide, suggestive of O-antigen specific antibodies in the used antiserum.  相似文献   

10.
Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2-3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5-6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, P(i) and PP(i). The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected.  相似文献   

11.
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.  相似文献   

12.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

13.
During a study of serotyping of Cryptococcus neoformans, we found that the type strain of C. neoformans (CBS 132) was serotype A-D. This strain agglutinated with both factor 7 serum (specific for serotype A) and factor 8 serum (specific for serotype D) in our serotyping system. Therefore, we investigated the chemical structure of the antigenic capsular polysaccharide of this strain. The soluble capsular polysaccharide was obtained from the culture supernatant fluid by precipitation with ethanol. Column chromatography of the polysaccharide on DEAE-cellulose yielded three fractions (F-1 to F-3). The major antigenic activity was found in the F-3 fraction. The results obtained by methylation analysis, controlled Smith degradation-methylation analysis, partial acid hydrolysis, and other structural studies of F-3 polysaccharide indicated that the polysaccharide contains mannose, xylose, and glucuronic acid at a ratio of 7:2:2, and has a backbone of alpha (1-3)-linked D-mannopyranoside residues with a single branch of beta (1-2)-xylose and glucuronic acid. The ratio of mannose residues with or without a branch in the F-3 polysaccharide was 4:3 and its molecular weight calculated from the average of the degree of polymerization was 46,500 daltons. These results indicate that the chemical structure of the capsular polysaccharide of serotype A-D is very similar to those from serotypes A and D, suggesting that small differences in the molar ratio and pattern of linkage of monosaccharides in the branch of the polysaccharides of the three serotypes may be responsible for their different specificities.  相似文献   

14.
The chemical structure of the K4-specific capsular polysaccharide (K4 antigen) of Escherichia coli O5:K4:H4 was elucidated by composition, carboxyl reduction periodate oxidation methylation nuclear-magnetic-resonance spectroscopy and enzymatic cleavage. The polysaccharide consists of a backbone with the structure----3)-beta-D-glucuronyl-(1,4)-beta-D-N-acetylgalactosaminyl(1- to which beta-fructofuranose is linked at C-3 of glucuronic acid. Mild acid hydrolysis liberated fructose and converted the K4 antigen into a polysaccharide which has the same structure as chondroitin. The defructosylated polysaccharide was a substrate for hyaluronidase and chondroitinase. The serological reactivity of the K4 polysaccharide was markedly reduced after defructosylation.  相似文献   

15.
The structure of the Escherichia coli K100 capsular polysaccharide, cross-reactive with that from type b Haemophilus influenzae, was determined by using a combination of chemical and spectroscopic techniques. The structure of the K100 repeating unit was found to be----3)-beta-D-Ribf-(1----2)-D-ribitol-5-(PO4----. The K100 polysaccharide is thus identical in composition to, but different in linkage from, the H. influenzae type b capsular polysaccharide, which has beta-D-Ribf-(1----1)-D-ribitol linkages.  相似文献   

16.
An O-specific polysaccharide was isolated from the lipopolysaccharide of a plant-growth-promoting bacterium Azospirillum brasilense Sp245 and studied by sugar analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY. The polysaccharide was found to be a new rhamnan with a pentasaccharide repeating unit having the following structure:-->2)-beta-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->2)-alpha-D-Rhap-(1-->  相似文献   

17.
A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5–5.3 μg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 μg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 μg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1.  相似文献   

18.
A neutral O-specific polysaccharide (O-antigen) was isolated from the lipopolysaccharide (LPS) of the bacterium Proteus penneri 71. On the basis of sugar analysis and 1H- and 13C-NMR spectroscopic studies, including two-dimensional COSY, 13C,1H heteronuclear COSY and ROESY, the following structure of the trisaccharide repeating unit of the polysaccharide was established: -->3)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpNAc-(1-->3)-alpha-D-Galp-(1-- > The polysaccharide has the same carbohydrate backbone as the O-specific polysaccharide of P. penneri 19 and both are similar to that of P. penneri 62 studied by us previously. A cross-reactivity of anti-P. penneri 71, 19 and 62 O-antisera with 11 P. penneri strains was revealed and substantiated at the level of the O-antigen structures. These strains could be divided into three subgroups within a new proposed Proteus O64 serogroup containing P. penneri strains only.  相似文献   

19.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

20.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号