首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a λgtll expression library constructed from MG pericarp poly(A)+ RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is different from that cloned earlier from cv Ailsa Craig (J Ray et al. [1989] Eur J Biochem 174:119-124). PME antibodies and the cDNA clone are used to determine changes in PME gene expression in developing fruits from normally ripening cv Rutgers and ripening-impaired mutants ripening inhibitor (rin), nonripening (nor), and never ripe (Nr). In Rutgers, PME mRNA is first detected in 15-day-old fruit, reaches a steady-state maximum between 30-day-old fruit and MG stage, and declines thereafter. PME activity is first detectable at day 10 and gradually increases until the turning stage. The increase in PME activity parallels an increase in PME protein; however, the levels of PME protein continue to increase beyond the turning stage while PME activity begins to decline. Patterns of PME gene expression in nor and Nr fruits are similar to the normally ripening cv Rutgers. However, the rin mutation has a considerable effect on PME gene expression in tomato fruits. PME RNA is not detectable in rin fruits older than 45 days and PME activity and protein begin showing a decline at the same time. Even though PME activity levels comparable to 25-day-old fruit were found in root tissue of normal plants, PME protein and mRNA are not detected in vegetative tissues using PME antibodies and cDNA as probes. Our data suggest that PME expression in tomato pericarp is highly regulated during fruit development and that mRNA synthesis and stability, protein stability, and delayed protein synthesis influence the level of PME activity in developing fruits.  相似文献   

2.
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant.  相似文献   

3.
4.
Changes in Gene Expression during Tomato Fruit Ripening   总被引:13,自引:7,他引:6       下载免费PDF全文
Total proteins from pericarp tissue of different chronological ages from normally ripening tomato (Lycopersicon esculentum Mill. cv Rutgers) fruits and from fruits of the isogenic ripening-impaired mutants rin, nor, and Nr were extracted and separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Analysis of the stained bands revealed increases in 5 polypeptides (94, 44, 34, 20, and 12 kilodaltons), decreases in 12 polypeptides (106, 98, 88, 76, 64, 52, 48, 45, 36, 28, 25, and 15 kilodaltons), and fluctuations in 5 polypeptides (85, 60, 26, 21, and 16 kilodaltons) as normal ripening proceeded. Several polypeptides present in ripening normal pericarp exhibited very low or undetectable levels in developing mutant pericarp. Total RNAs extracted from various stages of Rutgers pericarp and from 60 to 65 days old rin, nor, and Nr pericarp were fractionated into poly(A)+ and poly(A) RNAs. Peak levels of total RNA, poly(A)+ RNA, and poly(A)+ RNA as percent of total RNA occurred between the mature green to breaker stages of normal pericarp. In vitro translation of poly(A)+ RNAs from normal pericarp in rabbit reticulocyte lysates revealed increases in mRNAs for 9 polypeptides (116, 89, 70, 42, 38, 33, 31, 29, and 26 kilodaltons), decreases in mRNAs for 2 polypeptides (41 and 35 kilodaltons), and fluctuations in mRNAs for 5 polypeptides (156, 53, 39, 30, and 14 kilodaltons) during normal ripening. Analysis of two-dimensional separation of in vitro translated polypeptides from poly(A)+ RNAs isolated from different developmental stages revealed even more extensive changes in mRNA populations during ripening. In addition, a polygalacturonase precursor (54 kilodaltons) was immunoprecipitated from breaker, turning, red ripe, and 65 days old Nr in vitro translation products.  相似文献   

5.
Huber DJ  Lee JH 《Plant physiology》1988,87(3):592-597
Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed.  相似文献   

6.
Modifications to the cell wall of developing and ripening tomato fruit are mediated by cell wall-degrading enzymes, including a beta-d-xylosidase or alpha-l-arabinofuranosidase, which participate in the breakdown of xylans and/or arabinoxylans. The activity of both enzymes was highest during early fruit growth, before decreasing during later development and ripening. Two beta-d-xylosidase cDNAs, designated LeXYL1 and LeXYL2, and an alpha-l-arabinofuranosidase cDNA, designated LeARF1, were obtained. Accumulation of mRNAs for beta-d-xylosidase and alpha-l-arabinofuranosidase was examined during fruit development and ripening. LeARF1 and LeXYL2 genes were relatively highly expressed during fruit development and decreased after the onset of ripening. By contrast, LeXYL1 was not expressed during fruit development, but was expressed later, particularly during over-ripening. The expression of all three genes was also followed in ripening-impaired mutants, Nr, Nr2, nor, and rin of cv. Ailsa Craig fruit. LeXYL2 mRNA was detected in the ripe fruits of all the mutants and its abundance was similar to that in mature green wild-type fruit. By contrast, LEXYL1 mRNA was expressed only in the ripe fruits of the Nr mutant, suggesting that the two beta-d-xylosidase genes are subject to distinct regulatory control during fruit development and ripening. LeARF1 mRNA was detected in ripe fruits of Nr2, nor and rin, and not in ripe fruit of the Nr mutant. The accumulation of LeARF1 in ripe fruit was restored by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, while 1-MCP had no effect on the expression of LeXYL1 or LeXYL2. This suggests that LeARF1 expression is subject to negative regulation by ethylene and that the two beta-d-xylosidase genes are independent of ethylene action.  相似文献   

7.
The mRNA accumulation of two endo-1,4-[beta]-D-glucanase genes, Cel1 and Cel2, was examined in the pericarp and locules throughout the development of normal tomato (Lycopersicon esculentum) fruit and the ripening-impaired mutants rin and Nr. Both Cel1 and Cel2 were expressed transiently at the earliest stages of fruit development during a period corresponding to cell division and early cell expansion. In the pericarp, the mRNA abundance of both genes increased markedly at the breaker stage; the level of Cel1 mRNA decreased later in ripening, and that of Cel2 increased progressively. Cel2 mRNA levels also increased at the breaker stage in locules but after initial locule liquefaction was already complete. In rin fruit mRNA abundance of Cel1 was reduced and Cel2 was virtually absent, whereas in Nr Cel1 was expressed at wild-type levels and Cel2 was reduced. In wild-type fruit ethylene treatment slightly promoted the mRNA accumulation of both genes. In rin fruit ethylene treatment strongly increased the mRNA abundance of Cel1 to an extent greater than in wild-type fruit, but Cel2 mRNA was absent even after ethylene treatment. These two endo-1,4-[beta]-D-glucanase genes, therefore, do not show coordinated expression during fruit development and are subject to distinct regulatory control. These results suggest that the product of the Cel2 gene contributes to ripening-associated cell-wall changes.  相似文献   

8.
9.
Activity levels of UDP-glucose: (1,3)-β-glucan (callose) synthase in microsomal membranes of pericarp tissue from tomato fruit (Lycoperisicon esculentum Mill, cv Rutgers) were determined during development and ripening. Addition of the phospholipase inhibitors O-phosphorylcholine and glycerol-1-phosphate to homogenization buffers was necessary to preserve enzyme activity during homogenization and membrane isolation. Enzyme activity declined 90% from the immature green to the red ripe stage. The polypeptide composition of the membranes did not change significantly during ripening. The enzyme from immature fruit was inactivated by exogenously added phospholipases A2, C, and D. These results suggest that the decline in callose synthase activity during ontogeny may be a secondary effect of endogenous lipase action.  相似文献   

10.
Fruits of tomato, Lycopersicon esculentum Mill. cv Liberty, ripen slowly and have a prolonged keeping quality. Ethylene production and the levels of polyamines in pericarp of cv Liberty, Pik Red, and Rutgers were measured in relation to fruit development. Depending on the stage of fruit development, Liberty produced between 16 and 38% of the ethylene produced by Pik Red and Rutgers. The polyamines putrescine, spermidine, and spermine were present in all cultivars. Cadaverine was detected only in Rutgers. Levels of putrescine and spermidine declined between the immature and mature green stages of development and prior to the onset of climacteric ethylene production. In Pik Red and Rutgers, the decline persisted, whereas in Liberty, the putrescine level increased during ripening. Ripe pericarp of Liberty contained about three and six times more free (unconjugated) polyamines than Pik Red and Rutgers, respectively. No pronounced changes in spermidine or cadaverine occurred during ripening. The increase in the free polyamine level in ripe pericarp of Liberty may account for the reduction of climacteric ethylene production, and prolonged storage life.  相似文献   

11.
The fruit of the Alcobaca landrace of tomato (Lycopersicon esculentum Mill.) have prolonged keeping qualities (determined by the allele a/c) and contain three times as much putrescine as the standard Rutgers variety (A/c) at the ripe stage (ARG Dibble, PJ Davies, MA Mutschler [1988] Plant Physiol 86: 338-340). Polyamine metabolism and biosynthesis were compared in fruit from Rutgers and Rutgers-a/c—a near isogenic line possessing the allele a/c, at four different stages of ripening. The levels of soluble polyamine conjugates as well as wall bound polyamines in the pericarp tissue and jelly were very low or nondetectable in both genotypes. The increase in putrescine content in a/c pericarp is not related to normal ripening as it occurred with time and whether or not the fruit ripened. Pericarp discs of both normal and a/c fruit showed a decrease in the metabolism of [1,4-14C]putrescine and [terminal labeled-3H]spermidine with ripening, but there were no significant differences between the two genotypes. The activity of ornithine decarboxylase was similar in the fruit pericarp of the two lines. Arginine decarboxylase activity decreased during ripening in Rutgers but decreased and rose again in Rutgers-a/c fruit, and as a result it was significantly higher in a/c fruit than in the normal fruit at the ripe stage. The elevated putrescine levels in a/c fruit appear, therefore, to be due to an increase in the activity of arginine decarboxylase.  相似文献   

12.
13.
14.
The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The K m values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.  相似文献   

15.
The [beta] subunit of tomato (Lycopersicon esculentum Mill.) fruit polygalacturonase 1 is a cell wall glycoprotein that binds to and apparently regulates the catalytic PG2 polypeptide in vivo. [beta] Subunit and polygalacturonase 2 (PG2) expression have been investigated in both wild-type and ripening inhibitor (rin) mutant fruit. During fruit development and ripening, [beta] subunit expression was unrelated to expression of the catalytic PG2 protein. In wild-type fruit, [beta] subunit mRNA and protein were first detected early in development and increased to maximal levels before PG2 mRNA and protein were detected. At the onset of ripening [beta] subunit mRNA decreased dramatically, but [beta] subunit protein levels remained stable. In rin fruit, which fail to ripen, [beta] subunit expression was similar to that in wild type, although PG2 mRNA and protein were not detected. These data suggest that [beta] subunit expression is ethylene independent and regulated primarily by developmental cues. This conclusion is supported by results from ethylene-treated immature (20 days after pollination) wild-type and rin fruit in which no significant differences were observed in [beta] subunit expression patterns in response to ethylene treatment. Surprisingly, RNA blot analysis indicated that catalytic PG2 mRNA was induced in immature rin fruit after 3 d of exogenous ethylene treatment. In addition, [beta] subunit mRNA and protein were also detected at lower levels in root, leaf, and flower tissues of both genotypes, suggesting a broader functional role for the protein.  相似文献   

16.
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.  相似文献   

17.
Fruits of tomato (Lycopersicon esculentum Mill.) cv. Rutgers and of a nearly isogenic stock containing the ripening inhibitor gene rin harvested at green (66% mature) and ripe (107% mature) stages were studied for the subcellular distribution of isoenzymes using isoelectric focusing. The enzymes studied were peroxidases, esterases, phosphatases, phosphorylase, malate dehydrogenases, and IAA oxidases. During ripening of normal fruit the activities in the supernatant fraction of all of these enzymes, except malate dehydrogenase, decreased. In the particulate fractions some enzymes decreased while others increased in activity. The rin gene inhibited only some of the changes which occurred during ripening of normal fruit. It is postulated that changes in the degree to which enzymes are bound to membranes comprise one of the mechanisms by which the activities of enzymes are controlled in tomato pericarp, and that these membranes remain intact during ripening.  相似文献   

18.
Activity and expression of polygalacturonase (PG), a hydrolytic enzyme involved in ultrastructural changes in the pericarp of sweet pepper (Capsicum annaum), were investigated at different ripening stages of the pepper cultivars Mandi and Talanduo. Molecular cloning of CaPG was carried out by constructing a cDNA library from three stages of fruit ripening. Morphological determination, PG assay, RT-PCR, and ultrastructural studies were used to quantify changes in CaPG gene expression in the pericarp from green, color change and fully ripened stages. We found that CaPG gene expression, PG activity and striking changes in the structure of the cell wall occurred with the transition of ripening stages. CaPG gene expression was high (obvious PCR products) in mature and ripened stages of both cultivars; however, the CaPG gene was not expressed in preclimacteric fruits or vegetative tissues. We conclude that developmental regulation of CaPG gene expression is instrumental for sweet pepper fruit ripening; its expression during development leads to dissolution of middle lamella and eventually disruption of the fully ripened cell wall.  相似文献   

19.
Expansins are plant proteins that have the capacity to induce extension in isolated cell walls and are thought to mediate pH-dependent cell expansion. J.K.C. Rose, H.H. Lee, and A.B. Bennett ([1997] Proc Natl Acad Sci USA 94: 5955-5960) reported the identification of an expansin gene (LeExp1) that is specifically expressed in ripening tomato (Lycopersicon esculentum) fruit where cell wall disassembly, but not cell expansion, is prominent. Expansin expression during fruit ontogeny was examined using antibodies raised to recombinant LeExp1 or a cell elongation-related expansin from cucumber (CsExp1). The LeExp1 antiserum detected expansins in extracts from ripe, but not preripe tomato fruit, in agreement with the pattern of LeExp1 mRNA accumulation. In contrast, antibodies to CsExp1 cross-reacted with expansins in early fruit development and the onset of ripening, but not at a later ripening stage. These data suggest that ripening-related and expansion-related expansin proteins have distinct antigenic epitopes despite overall high sequence identity. Expansin proteins were detected in a range of fruit species and showed considerable variation in abundance; however, appreciable levels of expansin were not present in fruit of the rin or Nr tomato mutants that exhibit delayed and reduced softening. LeExp1 protein accumulation was ethylene-regulated and matched the previously described expression of mRNA, suggesting that expression is not regulated at the level of translation. We report the first detection of expansin activity in several stages of fruit development and while characteristic creep activity was detected in young and developing tomato fruit and in ripe pear, avocado, and pepper, creep activity in ripe tomato showed qualitative differences, suggesting both hydrolytic and expansin activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号