首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batrachochytrium dendrobatidis, an aquatic fungus, has been linked to recent amphibian population declines. Few surveys have assessed B. dendrobatidis infections in areas where the disease is suggested to be less virulent and population declines have not been observed, such as southeastern North America. Although adult Rana catesbeiana and Rana sphenocephala from the Savannah River Site, South Carolina collected in 1979 and 1982 were identified as having B. dendrobatidis, it is unknown whether the fungus is currently present at the site or if susceptibility to infection varies among species or wetlands with different histories of environmental contamination. From 15 May through 15 August 2004, we collected R. catesbeiana and R. sphenocephala tadpoles from three wetlands with differing contamination histories on the Savannah River Site, South Carolina. We found B. dendrobatidis in only one of the wetlands we surveyed. Batrachochytrium dendrobatidis infection was identified in 64% of the R. catesbeiana tadpoles sampled and histologically assessed (n=50) from a wetland contaminated with mercury, copper, and zinc. No R. sphenocephala tadpoles from this site (n=50) were infected. In combination with a recently published report, our data suggest that B. dendrobatidis has been present at the Savannah River Site for over 25 yr but has not caused any apparent population declines. This time period is similar to the known presence of 30 yr of B. dendrobatidis in northeastern North America. Our data suggest that R. sphenocephala larvae might be resistant to infection, even when occupying the same wetland as the infected R. catesbeiana. Our survey did not clarify the effects of environmental contamination on infection severity, but our study stresses the importance of additional field surveys to document how this pathogen is affecting amphibians globally.  相似文献   

2.
Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.  相似文献   

3.
Chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, threatens anuran populations worldwide. Effects of B. dendrobatidis on frog species are variable. Some species typically develop nonlethal infections and may function as carriers; others typically develop lethal infections that can lead to population declines. Nonlethal infections in the bullfrog (Lithobates catesbeianus) are well-documented. In contrast, recently metamorphosed wood frogs (L. sylvaticus) can die from chytridiomycosis. We conducted an ex-situ experiment between May and July 2010 to determine whether B. dendrobatidis-infected bullfrogs could transmit the fungus to wood frog tadpoles when the two species shared a body of water. We tested for B. dendrobatidis infections with quantitative polymerase chain reactions (qPCR) in a subsample of the wood frog tadpoles and in all metamorphosed wood frogs and compared risk of death of froglets exposed and unexposed to infected bullfrogs. We detected B. dendrobatidis sporadically in subsampled treatment tadpoles (nine of 90, 10%) and frequently in treatment froglets (112 of 113, 99.1%). Pooled risk of froglet death was higher (P<0.001) in treatment enclosures than in control enclosures. Our results indicate that, at the low infection loads bullfrogs tend to carry, swabbing for PCR analyses may underestimate prevalence of B. dendrobatidis in this species. We highlight bullfrog disease screening as a management challenge, especially in light of exotic bullfrog colonies on multiple continents and large-scale global trade in this species. We document the importance of quantifying lethal and sublethal effects of bullfrog vectors on B. dendrobatidis-susceptible species.  相似文献   

4.
Chytridiomycosis is an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, which has been implicated in amphibian declines worldwide. The mountain yellow-legged frog Rana muscosa is a declining amphibian species that can be infected by B. dendrobatidis; however, transmission between conspecifics has not been documented. Here, we present experimental evidence that R. muscosa tadpoles can be infected by fungal zoospores and that they can transmit infection to each other and to postmetamorphic animals. We compared several techniques for detecting B. dendrobatidis transmission and found that histology with serial sectioning was able to detect infection before cytology or visual inspections. We also show that R. muscosa tadpoles appear healthy with B. dendrobatidis infection, while postmetamorphic animals experience mortality. In addition, we provide guidelines for visually detecting B. dendrobatidis in R. muscosa tadpoles, which may be useful in other affected species. Field surveys of infected and uninfected populations verify this identification technique.  相似文献   

5.
Lichens, a classic example of an obligate symbiosis between fungi and photobionts (which could be algae or cyanobacteria), are abundant in many terrestrial ecosystems. The genetic structure of the photobiont population found in association with a lichen-forming fungal species could be affected by fungal reproductive mode and by the spatial extent of gene flow in the photobiont. Using DNA sequences from one nuclear ribosomal and two chloroplast loci, we analyzed the genetic structure of the photobiont associated with the fungus Ramalina menziesii at an oak woodland study site in southern California. We had previously shown that the fungus exhibited no genetic structure among four local sites or three phorophyte species. Our goals were to identify the photobiont species and assess its genetic structure. We found that R. menziesii was highly specific in its photobiont choice and associated with one alga, Trebouxia decolorans. In contrast to the fungal population, we found significant differentiation among the algae sampled on three oak species and little genetic structure among the sites for two of the three algal loci. We hypothesize that R. menziesii is locally adapted to the phorophyte species through habitat specialization in the algal partner of the symbiosis.  相似文献   

6.
The chytridiomycete fungus Batrachochytrium dendrobatidis is known to be focally distributed across Europe, but has only been linked to "chytridiomycosis at a few locations in Spain. Here we report the second occurrence of chytridiomycosis in European amphibians. We found a population of endangered Sardinian newts (Euproctus platycephalus) exhibiting clinical signs of disease including loss of digits and patchy, discolored skin. Molecular examination of skin samples tested positive for B. dendrobatidis. The population of E. platycephalus has been in decline on a timescale consistent with the global emergence of chytridiomycosis, and the ecology of this salamander suggests that the disease in this species warrants concern.  相似文献   

7.
Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide. It has been associated with catastrophic declines of frog populations including those in pristine habitats in Queensland, Australia. To facilitate genetic and disease studies of this fungus and related species, it is essential to have a reliable long-term storage method to maintain genetic integrity of isolates. We have adapted well-established techniques used for the long-term storage of tissue-culture cell lines to the preservation of B. dendrobatidis and other chytridiomycetes. This simple method has allowed us to recover these fungi from storage at -80 degrees C and in liquid nitrogen over an extended period. With this technique it is now possible to preserve saprobic and parasitic isolates from a variety of environmental and disease situations for comparative genetic and biological studies.  相似文献   

8.
Batrachochytrium dendrobatidis (Bd), the cause of a fatal fungal skin disease of amphibians that has led to massive die-offs, global declines and extinctions, has spread internationally as a pandemic clone with low genetic diversity. A need exists to develop highly polymorphic markers to determine centers of origin and patterns of spread to assist in the development of management strategies. Comparison of paralogous sequences, obtained from the 2 sequenced Bd genomes, indicates useful levels of inter-strain polymorphism in repetitive fragments. We assessed 6 repetitive loci for variation within and among Australian isolates using standard fragment analysis and capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis. Confirmation of inter-isolate polymorphism was achieved for 2 marker systems, highlighting the potential of repetitive loci for the development of polymorphic markers in Bd. In addition, we found that repetitive loci in Bd include possible orthologs of virulence-related genes from pathogenic fungi.  相似文献   

9.
Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.  相似文献   

10.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines, and the extinctions of stream-breeding amphibian species worldwide. While the factors that limit the distribution and abundance of B. dendrobatidis across large geographical regions are fairly well understood, little is known about the distribution of the fungus within localized areas such as individual catchments. The accurate identification of amphibian populations likely to be exposed to the fungus is urgently required for effective disease management. We conducted disease surveys of frogs representing five ecological guilds in south-east Queensland, Australia, and hypothesized that if B. dendrobatidis were responsible for the disappearance of stream-breeding amphibian populations, infection prevalence and intensity would be greatest in frogs breeding in permanent, flowing water. Overall, 30.3% of the 519 frogs we sampled were infected with B. dendrobatidis . However, infections were not evenly distributed across the ecological guilds, being almost completely restricted to frogs breeding at permanent waterbodies. Of these, stream breeders were significantly more likely to be infected than were pond breeders, though the intensity of frogs' infections did not differ significantly between the two guilds. Batrachochytrium dendrobatidis was detected on only one of the 117 frogs that were found at ephemeral ponds, ephemeral streams, or terrestrial sites. These findings provide strong support for the hypothesis that B. dendrobatidis was responsible for many of the unexplained disappearances of stream-breeding amphibian populations in recent decades, and will enable wildlife managers to more accurately focus conservation efforts on those species at highest risk of disease-related decline.  相似文献   

11.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines and the extinctions of amphibian species worldwide. Although several studies have shown that the prevalence of chytridiomycosis (the disease caused by the fungus) increases in cooler months, the magnitude and timing of these seasonal fluctuations have yet to be accurately quantified. We conducted disease sampling in a single population of stony creek frogs Litoria wilcoxii on 13 occasions over a 21-month period and used quantitative real-time polymerase chain reaction to detect and quantify the number of B. dendrobatidis zoospores present on samples. Disease prevalence varied significantly across sampling sessions, peaking at 58.3% (in early spring) and dropping to as low as 0% on two occasions (late summer and early autumn). There was a significant negative relationship between disease prevalence and mean air temperature in the 30 days prior to sampling. These large-scale seasonal fluctuations in chytridiomycosis levels will strongly influence conservation programs and amphibian disease research.  相似文献   

12.
Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.  相似文献   

13.

Background

Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information.

Methodology/Principal Findings

Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas.

Conclusions/Significance

Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.  相似文献   

14.
Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.  相似文献   

15.
Cryptococcus neoformans, a model pathogenic fungus, exemplifies the application of several genome-wide approaches to investigate fungal pathogenicity. This review focuses on the application of genome-wide approaches to large populations of clinical and environmental isolates rather than to a small number of well-defined laboratory strains. Specific examples include the construction and utilization of genetic linkage maps, analyses of quantitative trait genes and loci, and the use of genome-wide genetic markers in population studies.  相似文献   

16.
The basidiomycete Ustilago scitaminea Sydow, which causes sugarcane smut disease, has been spreading throughout Africa and America since the 1940s. The genetic diversity and structure of different populations of this fungus worldwide was investigated using microsatellites. A total of 142 single-teliospore were isolated from 77 distinct whips (sori) collected in 15 countries worldwide. Mycelium culture derived from on generation of selfing of these single teliospores were analysed for their polymorphisms at 17 microsatellite loci. All these strains but one were homozygous at all loci, indicating that selfing is likely the predominant reproductive mode of U. scitaminea. The genetic diversity of either American or African U. scitaminea populations was found to be extremely low and all strains belong to a single lineage. This lineage was also found in some populations of Asia, where most U. scitaminea genetic diversity was detected, suggesting that this fungal species originated from this region. The strong founder effect observed in U. scitaminea African and American populations suggests that the fungus migrated from Asia to other continents on rare occasions through movement of infected plant material.  相似文献   

17.
Amphibian chytridiomycosis is a fungal disease caused by the chytrid fungus Batrachochytrium dendrobatidis. It is arguably the most significant recorded infectious disease of any vertebrate class. The disease is reducing amphibian biodiversity across most continents and regions of the world, affecting the resilience of surviving populations and driving multiple species to extinction. It is now recognised by the World Organisation for Animal Health (OIE) as an internationally notifiable disease. Collaborative research in areas including the development of diagnostic assays, distribution and impact of the disease, and management (treatment and policy) has assisted in leading a paradigm shift in accepting infectious disease as a major factor influencing wildlife population stability and biodiversity.  相似文献   

18.
Amphibian species are declining at an alarming rate on a global scale in large part owing to an infectious disease caused by the chytridiomycete fungus, Batrachochytrium dendrobatidis. This disease of amphibians has recently emerged within Europe, but knowledge of its effects on amphibian assemblages remains poor. Importantly, little is known about the environmental envelope that is associated with chytridiomycosis in Europe and the potential for climate change to drive future disease dynamics. Here, we use long-term observations on amphibian population dynamics in the Pe?alara Natural Park, Spain, to investigate the link between climate change and chytridiomycosis. Our analysis shows a significant association between change in local climatic variables and the occurrence of chytridiomycosis within this region. Specifically, we show that rising temperature is linked to the occurrence of chytrid-related disease, consistent with the chytrid-thermal-optimum hypothesis. We show that these local variables are driven by general circulation patterns, principally the North Atlantic Oscillation. Given that B. dendrobatidis is known to be broadly distributed across Europe, there is now an urgent need to assess the generality of our finding and determine whether climate-driven epidemics may be expected to impact on amphibian species across the wider region.  相似文献   

19.
Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single-copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (F(ST) = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories.  相似文献   

20.
Amphibian population declines in Honduras have long been attributed to habitat degradation and pollution, but an increasing number of declines are now being observed from within the boundaries of national parks in pristine montane environments. The amphibian chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines and was recently documented in Honduras from samples collected in Pico Bonito National Park in 2003. This report now confirms Cusuco National Park, a protected cloud forest reserve with reported amphibian declines, to be the second known site of infection for Honduras. B. dendrobatidis infection was detected in 5 amphibian species: Craugastor rostralis, Duellmanohyla soralia, Lithobates maculata, Plectrohyla dasypus, and Ptychohyla hypomykter. D. soralia, P. dasypus, and P. hypomykter are listed as critically endangered in the IUCN Red List of Threatened Species and have severely fragmented or restricted distributions. Further investigations are necessary to determine whether observed infection levels indicate an active B. dendrobatidis epizootic with the potential to cause further population declines and extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号