首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a companion paper several methods of calculating the marginal unit water cost of plant carbon gain (E/A) were tested to determine whether stomata were behaving optimally in relation to regulating leaf gas exchange. In this paper one method is applied to several tropical tree species when leaf-to-air vapour pressure difference (D), photosynthetic photon flux density, leaf temperature, and atmospheric soil water availability were manipulated. The response of leaves that had expanded during the dry season were also compared to that of leaves that had expanded in the wet season. Few differences in absolute value of E/A, or the form of the relationship, were observed between species or between seasons. In the majority of species, E/A increased significantly as either leaf-to-air vapour pressure difference increased, at a leaf temperature of either 33C or 38C, or as in photosynthetic photon flux density increased. In contrast, as leaf temperature increased at constant D, E/A was generally constant. As pre-dawn water potential declined, E/A declined. The relationship between E/A and D did not differ whether internal or ambient carbon dioxide concentration were kept constant. It is concluded that stomata are only behaving optimally over a very small range of D. If a larger range of D is used, to incorporate values that more closely reflect those experienced by tropical trees in a savanna environment optimization is incomplete.Key words: Stomatal optimization theory, marginal unit water cost.   相似文献   

2.
3.
Hansen, A. P. and Pate, J. S. 1987. Evaluation of the 15N naturalabundance method and xylem sap analysis for assessing N2 fixationof understorey legumes in jarrah (Eucalyptus marginata Donnex Sm.) forest in S.W. Australia.—J. exp. Bot 38: 1446–1458. Nodulated seedlings of Acacia pulchella, A. alata and A. extensawere grown in glasshouse sand culture under a range of levels(0–16 mol m3) of nitrate, supplied as 15NO3, or as unenrichedlaboratory grade nitrate (15N value 5·5%o). Nitrate at8·0 mol m 3 or above was highly inhibitory to growthof all species. Using 15N dilution analysis of the 15N enrichedcultures to measure symbiotic dependency, it was shown that15N values of the parallel unenriched cultures increased innear linear fashion from close to zero in fully symbiotic plantsto values close to that of the supplied NO3 in plants experiencingnitrate levels (4·0 mol m3 or above) inhibiting N2 fixationby over 90%. Xylem sap analyses (0·4 mol m3 NO3 treatments)showed asparagine as the major nitrogenous solute, relativelylittle spill-over of free nitrate, and no evidence of majorshifts in balance of amino compounds with increasing dependenceon nitrate. This essentially invalidated use of the techniqueas a field assay for N2 fixation by the species. 15N values for total N of soil sampled at 64 widely distributedsites in jarrah forest ranged from – 2·15 to +5·4(mean +2·1). Comparable values for soil mineral N (NH+4and NO3) were +0·3 to + 14·2 (mean +5·1).15N values of the total plant N of the legumes and of non-N2-fixingreference species were also highly variable between sites, withlittle evidence of reference plant N accurately reflecting the15N abundance of soil nitrogen, or of visibly well nodulatedlegume components showing consistently lower 15N values thantheir companion reference plants. At one site it was possibleto compare 15N values of first season seedling legumes withpreviously published estimates of their progressive N2 fixationusing C2H2 reduction assays. It was concluded that heterogeneity in 15N discrimination ofsoil within the ecosystem precluded effective use of the 15Nnatural abundance technique for assessing legume N2 fixation. Key words: Acacia spp., 15N natural abundance,, xylem sap analysis,, nitrogen fixation.  相似文献   

4.
An increase of cytosolic Ca2 in the unicellular green alga Eremosphaera viridis activities Ca2-dependent K channels causing a hyperpolarization of the plasma membrane. Data from parallel calcium, and potential measurements were combined with I/V relationships. This yielded a steep Ca2-dependence of K channels with a co-operativity of 4 and an affinity of 300 nM.Key words: Eremosphaera viridis, plasma membrane, Ca2-dependent K channel, co-operative binding.   相似文献   

5.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

6.
Sixteen legumes were grown in N-free media so that N was suppliedentirely by symbiotic N2 fixation. The plant tissues were analyzedfor natural 15N abundance (expressed as 15N per mil relativeto air N2) with a ratio mass spectrometer. The nodules of desmodium,centro, siratro, soybean and winged bean showed high enrichmentin 15N (+9), while red clover showed slight enrichment (+2).The nodules of 9 other forage legumes (Townsville stylo, whiteclover, alsike clover, common vetch, Chinese milk vetch, senna,alfalfa, ladino clover, and hairy vetch) showed little enrichmentin 15N. In all the legumes investigated, particularly in the ureide-transportingplants such as desmodium, centro, siratro, soybean, winged beanand field bean, the 15N value of the shoots was negative (–3.2).The 15N value of the shoots in winged bean and field bean variedby about 1 depending on the Rhizobium strains used. The isotopicmass balance of 13 legumes indicated that isotopic fractionationoccurs during N2 fixation by the legume-rhizobia symbiosis witha preference for 14N over 15N, resulting in a 15N value of –0.2to –2 in the whole plant. The results indicate that 15N/14N isotopic discrimination witha preference for the lighter atom may occur in both N2 fixationand export of fixed N from nodules. 1Present address: Department of Soils and Fertilizers, NationalAgriculture Research Center, Kannondai, Tsukuba, Ibaraki 305,Japan. (Received October 8, 1985; Accepted April 7, 1986)  相似文献   

7.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

8.
An error occurs in the calibration of xylem pressure potential() against leaf-water potential () when the calibration is madeusing plant material in which the water stress has been inducedartificially after excision. The impostion of water stress afterexcision affects the determination more than it affects , consequentlythe relationship between these two indices of water stress isaltered. Care should be exercised to ensure that identical proceduresare adopted during . calibrations and during susbsequent fieldmeasurements of with the pressure-chamber apparatus.  相似文献   

9.
Lee  T; Liu  C 《Journal of experimental botany》1999,50(341):1855-1862
The involvement of Na+, K+, Cl- or Ca2+ in the regulation of salinity stress-induced proline accumulation via the inhibition of the activity of proline dehydrogenase (PDH; EC 1.4.3.1), a catabolic enzyme of proline, was investigated in the marine green macroalga Ulva fasciata Delile. After 6 h of exposure to elevated artificial seawater (ASW) salinity, adjusted either by increasing the NaCl content in 30 ASW (a change in ion ratio) or by concentrating ASW (a constant ion ratio), the contents of Na+, K+ and Cl- linearly accumulated with increasing salinity from 30-90 (parts per thousand); the accumulation pattern of each ion was similar between the two treatments. An increase in NaCl content in ASW induced proline accumulation, but decreased both the PDH activity and the total water-soluble Ca2+ contents, while concentrated ASW had no effect. As compared to a constant value at 30, both the contents of total and water-soluble CA2+ and the activity of PDH decreased 1 h after exposure to 60 (adjusted by increasing NaCl content in 30 ASW) and concomitantly the content of seawater Ca2+ increased, while proline accumulated after 3 h. The addition of 15 mM ethylene glycol-bis-(2-aminoethyl ether) N,N,N-tetraacetic acid (EGTA) in 60 ASW (adjusted by increasing the NaCl content in 30 ASW) enhanced both the proline accumulation and the decrease in the content of total and water-soluble cellular Ca2+ and the activity of PDH; the effects of EGTA were reversed by 10 mM CaSO4. These results indicate that a loss of cellular Ca2+ is associated with the NaCl induction of proline accumulation via an inhibition of PDH activity in U. fasciata.  相似文献   

10.
In recent years alternative ways have been proposed to transformmeasurements of leaf water potential, , and relative water content,R*, in order to derive values of osmotic pressure at full turgidityin leaves and shoots, o(when 0). Two types of transformationsare usually considered: 1/ versus R* and versus 1/R*, and linearregression is used to fit the data in the region where turgoris thought to be zero. It appears that when o is estimated bylinear extrapolation of 1/Psi; versus R* then apoplastic watermight not influence the accuracy of o but when the versus \/R*transformation is used apoplastic water causes an underestimateof o. We examine the accuracy of the estimate of o obtainedfrom the two transformations when there are random errors in, systematic errors in , and when the osmotic solutions arenon-ideal. The 1/ versus R* transformation generally producesthe best estimate of 0 by linear extrapolation.  相似文献   

11.
A karyopherin (LeKAP1) cDNA was isolated from tomato plants. The deduced LeKAP1 protein sequence of 527 amino acids showed similarity to other plant karyopherin proteins. When LeKAP1 was expressed in a yeast two-hybrid system together with the gene coding for the capsid protein (CP) of the tomato yellow curl leaf virus (TYLCV), it interacted directly with CP. Thus, LeKAP1 may be involved in the nuclear import of TYLCV CP and, potentially, the TYLCV genomes during viral infection of the host tomato cells.  相似文献   

12.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

13.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

14.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

15.
Legge, N. J. 1985. Water movement from soil to root investigatedthrough simultaneous measurement of soil and stem water potentialin potted trees.—J. exp. Bot. 36: 1583–1589. Osmotic tensiometers implanted in the stems of three mountainash (Eucalyptus regnans F. Muell.) saplings growing in largeplastic bins recorded stem water potential, w, while soil waterpotential, w, was simultaneously recorded by instruments nearthe trees' roots and in the surrounding root-free soil Earlyin a drying cycle, with the soil still wet, the diurnal variationin 1, was often slight, despite diurnal variations in u approaching2.0 M Pa. Late in a drying cycle the diurnal fluctuations in1, and u were very similar although changes in 1, still laggedup to 1.5 h behind changes in u. 1values at this time occasionallyreached –3.0 MPa with no apparent damage to the treesWatering the bins in daytime led to a response in 1, valueswithin about 5 min, whereas u, values did not respond for afurther 20 min. u values then rose rapidly but after only 1h began to decline again, while 1, values remained at or nearsaturation for the rest of the day. Water uptake hypotheseswhich attribute an important role to a soil-root interface resistanceare not supported by these data Key words: —Soil water potential, penrhizal gradients  相似文献   

16.
Aeroponically grown sunflower seedlings (Helianthus annuus L.cv. Russian Giant) were droughted or treated with abscisic acid(ABA) for 7 d. Drought stress prompted a three-phase growthresponse in sunflower roots: an initial phase of increased rootelongation was followed by a period of almost complete inhibitionbetween about 6 h and 72 h; this was followed, in turn, by aphase of partial recovery in the rate of root elongation. Droughtdecreased the size of the apical meristem as cells in the proximalregion of the meristem vacuolated and elongated. Root-to-shootbiomass ratios (R:S) increased initially but declined after72 h. Drought stress decreased water potential () and osmoticpotential ( and increased turgor pressure p in the apical 30mm of the roots. These initial changes were transitory, lastingabout 3 h. Thereafter, and began to rise; p fell back to controllevels. In the later stages of treatment, fell as the stressgrew more severe, but fp was maintained by osmotic adjustment.Desiccation for 1 h increased turgor pressures in excised 30mm apical segments. The transitory increase in root elongationwas contemporary with the initial rise in p in the root apices,while the periods of greatest inhibition and partial recoveryin root elongation were contemporary with the periods of declineand partial recovery in the length of the apical meristem respectively.The inhibition of root elongation and the anatomical changesin the root apices were not determined by loss of turgor orlack of photosynthate, but rather appeared to be an active responseby the meristem to a drop in external . Treatment with ABA triggeredmany of the same changes as drought stress: ABA promoted a three-phasegrowth response, increased R:S, triggered the same initial changesin , , and p, increased p in excised 3.0 mm apical segments,and induced the same pattern of anatomical changes in the rootapices as drought stress. It is proposed that ABA mediates drought-inducedchanges in the primary development of sunflower roots. Key words: Abscisic acid, apical meristem, drought, osmotic adjustmen  相似文献   

17.
Bromus tectorum L. (cheatgrass) is an invasive winter annual whose seeds lose dormancy through dry after-ripening. In this paper a thermal after-ripening time model for simulating seed dormancy loss of B. tectorum in the field is presented. The model employs the hydrothermal time parameter mean base water potential (b(50)) as an index of dormancy status. Other parameters of the hydrothermal time equation (the hydrothermal time constant HT, the standard deviation of base water potentials b, and the base temperature Tb) are held constant, while b(50) is allowed to vary and accounts for changes in germination time-course curves due to stage of after-ripening or incubation temperature. To obtain hydrothermal time parameters for each of four collections, seeds were stored dry at 20C for different intervals, then incubated in water (O MPA) or polyethylene glycol (PEG) solutions (-0.5, -1.0, -1.5 MPa) at 15 and 25C. Germination data for the thermal after-ripening time model were obtained from seeds stored dry in the laboratory at 10, 15, 20, 30, 40, and 50°C for 0 to 42 weeks, then incubated at two alternating temperatures in water. Change in b(50) was characterized for each collection and incubation temperature as a linear function of thermal time in storage. Measurements of seed zone temperature at a field site were combined with equations describing changes in b(50) during after-ripening to make predictions of seed dormancy loss in the field. Model predictions were compared with values derived from incubation of seeds retrieved weekly from the field site. Predictions of changes in b(50) were generally close to observed values, suggesting the model is useful for simulating seed dormancy loss during after-ripening in the field.  相似文献   

18.
Aspects of the water relations of spring wheat (Triticum aestivumL.) are described for cultivars Highbury (low ABA) and TW269/9(high ABA), and low and high ABA accumulating F6selections derivedfrom a cross between them. In a pot experiment, pressure-volume (P-V) curves were constructedfor main stem leaf four (MSL4) of well-watered plants of Highburyand TW269/9. Estimates of solute potential (2) from these curveswere similar for the two cultivars, but varied with the timeof sampling and the time allowed for hydration in dim light. In a field experiment with four low and four high ABA F6lines,P-V curves for flag leaves from both droughted and irrigatedplants gave at both zero turgor (p) and zero water potential(1) which differed with degree of stress, sampling time andgenotype. 1was strongly dependent on the initialL of the leafand was reduced on average by c. 0.4 MPa per MPa decline ininitial L.5, was lower (more negative) by c. 0.1-MPa in theafternoon than in the morning. Overall, was also 0.1 MPa lowerin low ABA lines than in high ABA lines. In another field experiment, flag leaves of five low and fivehigh ABA F6lines were sampled over a 4 week period from droughtedplots and L and 5, measured (the latter by osmometry with expressedsap). For these leaves 5, at zero p or zero L was consistentlylower by 0.3–0.5 MPa than estimates of 5, from the P-Vcurves with flag leaves. However, data for the low ABA lineswere again lower (by c. 0.1 MPa) than those for high ABA lines. The consequences of these differences in 1 are discussed inrelation to the stimulation of ABA accumulation in low and highABA selections. Key words: Water potential, Solute potential, P-V curves, Wheat (Triticum aestivum), Drought stress  相似文献   

19.
The G-protein activator mastoparan and its analogues are becoming popular tools for studying signalling in plants. Therefore the abilities of mastoparan, mas7, mas8, and mas17 to activate phospholipase C (PLC), PLD and to induce the deflagellation response in Chlamydomonas moewusii Gerloff were compared. The aim was to test whether their relative potencies in a plant system resemble those reported for bovine brain Go and Gi, as is generally assumed, and to determine at which concentrations cells become permeabilized, a known effect of higher concentrations. The concentrations at which 50% deflagellation was induced, were 2.0 M mastoparan, 3.0 M mas8, 3.6 M mas7, and 5.8 M mas17. Similar activities were found for the production of phosphatidic acid, which is the result of the combined activities of PLD and PLC (together with diacylglycerol kinase). PLD activity alone was measured in vivo by its ability to phosphatidylate n-butanol. Surprisingly, the concentrations that stimulated maximum activity were about 10-fold lower (1 M) than those that stimulated maximum PLC activity (10 M). Mas17 was an exception with both maxima above 10 M. All the compounds except mas17 permeabilized C. moewusii cells. The concentrations at which 50% of the cells were permeabilized to Evan's blue were 7.4 M mas8, 16.0 M mas7 and 22.4 M mastoparan. In conclusion, only mastoparan itself and the least active analogue mas17 induced maximum deflagellation, PLC and PLD activities without permeabilizing the cells.Keywords: Chlamydomonas, deflagellation, mastoparan, phospholipases C and D, phospholipid metabolism   相似文献   

20.
Information on the biological activities of gibberellins (GAs)in the barley aleurone, Tangin-bozu dwarf rice, dwarf pea, lettucehypocotyl and cucumber hypocotyl bioassays is reviewed and discussedin the context of GA structure-activity relationships. The barley aleurone bioassay exhibits a limited response toGAs and it is suggested that this may be because the aleuronecells are able to carry out few GA interconversions. Consequentlyactivity is determined by the degree of compatibility betweenthe GAs and a receptor site. In this assay high biological activityis associated with GAs having a 3ß-hydroxy--lactonestructure. This activity is substantially enhanced by the additionalpresence of a 13-hydroxyl group. The substitution of a -lactoneor a -lactol for a -lactone results in reduced activity while3ß,13-dihydroxy GAs with either 20-carboxyl or 20-methylfunctions are completely inactive. The Tanginbozu dwarf ricebioassay responds to many more GAs than the barley aleuronesystem possibly because the rice seedlings can carry out extensiveGA interconversions. Under these circumstances GAs that areinactive per se can be metabolically converted to active forms.There is no interaction between the 3ß- and 13-hydroxyfunctions of GA molecules in the rice assay. Activity appearsto be determined by the degree oxidation of the C-20 group.The order of activity is usually -lactone > -lactol >-lactone > methyl > carboxyl. It is suggested this mayindicate that in rice seedlings C20-GAs are converted to C19-GAsvia a Baeyer-Villiger type oxidation. Activity in the dwarfpea bioassay is dependent upon GAs possessing both 3ß-and 13-hydroxyl groups and is again related to the state ofoxidation at the C-20 locus. In the lettuce bioassay activityis restricted to GAs with a -lactone function. In some instancesa -lactone, but not a -lactol, can substitute effectively. Thismay imply that the applied C20-GAs are not converted to C19-GAsand that the response to the -lactone results from the six-memberedring mimicking the -lactone at the receptor site. Only GAs havinga 19,10 or a 19,20 lactonic bridge show substantial activityin the cucumber bioassay. The additional presence of eithera 12- or a 13-hydroxyl group severely reduces activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号