首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Breast cancer is the most common female cancer and the second most common cause of female cancer-related deaths in the United States. World-wide, more than one million women will be diagnosed with breast cancer annually. In 2007, more than 175,000 women were diagnosed with breast cancer in the United States. However, deaths due to breast cancer have decreased in the recent years in part because of improved screening techniques, surgical interventions, understanding of the pathogenesis of the disease, and utilization of traditional chemotherapies in a more efficacious manner. One of the more exciting areas of improvement in the treatment of breast cancer is the entrance of novel therapies now available to oncologists. In the field of cancer therapeutics, the area of targeted and biologic therapies has been progressing at a rapid rate, particularly in the treatment of breast cancer. Since the advent of imatinib for the successful treatment of chronic myelogenous leukemia in the 2001, clinicians have been searching for comparable therapies that could be as efficacious and as tolerable. In order for targeted therapies to be effective, the agent must be able to inhibit critical regulatory pathways which promote tumor cell growth and proliferation. The targets must be identifiable, quantifiable and capable of being interrupted. In the field of breast cancer, two advances in targeted therapy have led to great strides in the understanding and treatment of breast cancer, namely hormonal therapy for estrogen positive receptor breast cancer and antibodies directed towards the inhibition of human epidermal growth factor receptor (HER)2. These advances have revolutionized the understanding and the treatment strategies for breast cancer. Building upon these successes, a host of novel agents are currently being investigated and used in clinical trials that will hopefully prove to be as fruitful. This review will focus on novel therapies in the field of breast cancer with a focus on metastatic breast cancer (MBC) and updates from the recent annual ASCO meeting and contains a summary of the results.  相似文献   

2.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.  相似文献   

3.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

4.
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.  相似文献   

5.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

6.
BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. BCR first exon sequences specifically activate the tyrosine kinase and transforming potential of BCR-ABL. We have tested the hypothesis that activation of BCR-ABL may involve direct interaction between BCR sequences and the tyrosine kinase regulatory domains of ABL. Full-length c-BCR as well as BCR sequences retained in BCR-ABL bind specifically to the SH2 domain of ABL. The binding domain has been localized within the first exon of BCR and consists of at least two SH2-binding sites. This domain is essential for BCR-ABL-mediated transformation. Phosphoserine/phosphothreonine but not phosphotyrosine residues on BCR are required for interaction with the ABL SH2 domain. These findings extend the range of potential SH2-protein interactions in growth control pathways and suggest a function for SH2 domains in the activation of the BCR-ABL oncogene as well as a role for BCR in cellular signaling pathways.  相似文献   

7.
目的:探讨PESV对K562细胞BCR/ABL融合基因及凋亡调控因子bcl-2和bad表达的影响.方法:将体外培养K562细胞,经PESV处理不同时间后,流式细胞术检测细胞凋亡率,荧光定量RT-PCR检测BCR/ABL、Bcl-2、Bad mRNA水平变化.结果:与对照组相比,PESV处理后K562细胞,凋亡率增加,BCR/ABL融合基因表达降低,抗凋亡相关基因Bcl-2 mRNA表达降低,促凋亡基因Bad mRNA表达增加.结论:PESV能降低降低K562细胞BCR/ABL融合基因的表达,可能通过调节Bcl-2和Bad表达,抑制K562细胞增殖,促进其凋亡.  相似文献   

8.
Phosphoinositide lipid second messengers are integral components of signaling pathways mediated by insulin, growth factors, and integrins. SHIP2 dephosphorylates phosphatidylinositol 3,4,5-trisphosphate generated by the activated phosphatidylinositol 3'-kinase. SHIP2 down-regulates insulin signaling and is present at higher levels in diabetes and obesity. SHIP2 associates with p130Cas and filamin, regulators of cell adhesion/migration and cytoskeleton, influencing cell adhesion/spreading. Type I collagen specifically induces Src-mediated tyrosine phosphorylation of SHIP2. To better understand SHIP2 function, we employed RNA interference (RNAi) approach to silence the expression of the endogenous SHIP2 in HeLa cells. Suppression of SHIP2 levels caused severe F-actin deformities characterized by weak cortical actin and peripheral actin spikes. SHIP2 RNAi cells displayed cell-spreading defects involving a notable absence of focal contact structures and the formation of multiple slender membrane protrusions capped by actin spikes. Furthermore, decreased SHIP2 levels altered distribution of early endocytic antigen 1 (EEA1)-positive endocytic vesicles and of vesicles containing internalized epidermal growth factor (EGF) and transferrin. EGF treatment of SHIP2 RNAi cells led to the following: enhanced EGF receptor (EGFR) degradation; increased EGFR ubiquitination; and increased association of EGFR with c-Cbl ubiquitin ligase. Taken together, these experiments demonstrate that SHIP2 functions in the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Accordingly, we suggest that, in HeLa cells, SHIP2 plays a distinct role in signaling pathways mediated by integrins and growth factor receptors.  相似文献   

9.
10.
It has been shown previously that the Huntingtin interacting protein 1 gene (HIP1) was fused to the platelet-derived growth factor beta receptor gene (PDGFbetaR) in leukemic cells of a patient with chronic myelomonocytic leukemia. This resulted in the expression of the chimeric HIP1/PDGFbetaR protein, which oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the Ba/F3 murine hematopoietic cell line to interleukin-3-independent growth. Tyrosine phosphorylation of a 130-kDa protein (p130) correlates with transformation by HIP1/PDGFbetaR and related transforming mutants. We report here that the p130 band is immunologically related to the 125-kDa isoform of the Src homology 2-containing inositol 5-phosphatase, SHIP1. We have found that SHIP1 associates and colocalizes with the HIP1/PDGFbetaR fusion protein and related transforming mutants. These mutants include a mutant that has eight Src homology 2-binding phosphotyrosines mutated to phenylalanine. In contrast, SHIP1 does not associate with H/P(KI), the kinase-dead form of HIP1/PDGFbetaR. We also report that phosphorylation of SHIP1 by HIP1/PDGFbetaR does not change its 5-phosphatase-specific activity. This suggests that phosphorylation and possible PDGFbetaR-mediated sequestration of SHIP1 from its substrates (PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4)) might alter the levels of these inositol-containing signal transduction molecules, resulting in activation of downstream effectors of cellular proliferation and/or survival.  相似文献   

11.
SHIP2 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains motifs susceptible to mediate protein-protein interaction. Using yeast two-hybrid, GST-pulldown, and coimmunoprecipitation studies, we isolated the CAP cDNA as a specific partner of SHIP2 proline-rich domain and showed by GST-pulldown experiments that the interaction took place with the SH3C of CAP. The interaction was not modulated in COS-7 cells stimulated by EGF neither in CHO cells overexpressing the insulin receptor in the presence or absence of insulin stimulation. We also showed that SHIP2 was able to coimmunoprecipitate with endogenous c-Cbl protein in the absence of CAP and with the insulin receptor in CHO-IR cell extracts. The presence of SHIP2 in a complex around the insulin receptor could account for the very specific increase in insulin sensitivity of SHIP2 knock-out mice.  相似文献   

12.
The mRNA encoding the chimeric BCR/ABL oncogene, which is transcribed from the Philadelphia chromosome in human chronic myelogenous leukemia, has a 5' noncoding sequence greater than 500 bases in length which is highly GC rich and contains a short open reading frame. This untranslated sequence has a dramatic inhibitory effect upon translational efficiency in vitro. However, when BCR/ABL message is expressed in certain cell types such as the NIH 3T3 cell line, the 5' noncoding region has little inhibitory effect on translational efficiency.  相似文献   

13.
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.  相似文献   

14.
The Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) catalyses the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3) to form PI(3,4)P2. PI(3,4,5)P3 is a key lipid second messenger, which can recruit signalling proteins to the plasma membrane and subsequently initiate numerous downstream signalling pathways responsible for the regulation of a plethora of cellular events such as proliferation, growth, apoptosis and cytoskeletal rearrangements. SHIP2 has been heavily implicated with several serious diseases such as cancer and type 2 diabetes but its regulation remains poorly understood. In order to gain insight into the mechanisms of SHIP2 regulation, a fragment of human SHIP2 containing the phosphatase domain and a region proposed to resemble a C2 domain was crystallized. Currently, no structural information is available on the putative C2-related domain or its relative position with respect to the phosphatase domain. Initial crystals were polycrystalline, but were optimized to obtain diffraction data to a resolution of 2.1 Å. Diffraction data analysis revealed a P212121 space group with unit cell parameters a = 136.04 Å, b = 175.84 Å, c = 176.89 Å. The Matthews coefficient is 2.54 Å3 Da?1 corresponding to 8 molecules in the asymmetric unit with a solvent content of 51.7 %.  相似文献   

15.
The single nucleotide polymorphism rs2071746 and a (GT)n microsatellite within the human gene encoding heme oxygenase-1 (HMOX1) are associated with incidence or outcome in a variety of diseases. Most of these associations involve either release of heme or oxidative stress. Both polymorphisms are localized in the promoter region, but previously reported correlations with heme oxygenase-1 expression remain not coherent. This ambiguity suggests a more complex organization of the 5’ gene region which we sought to investigate more fully.We evaluated the 5‘ end of HMOX1 and found a novel first exon 1a placing the two previously reported polymorphisms in intronic or exonic positions within the 5’ untranslated region respectively. Expression of exon 1a can be induced in HepG2 hepatoma cells by hemin and is a repressor of heme oxygenase-1 translation as shown by luciferase reporter assays. Moreover, minigene approaches revealed that the quantitative outcome of alternative splicing within the 5’ untranslated region is affected by the (GT)n microsatellite.This data supporting an extended HMOX1 gene model and provide further insights into expression regulation of heme oxygenase-1. Alternative splicing within the HMOX1 5'' untranslated region contributes to translational regulation and is a mechanistic feature involved in the interplay between genetic variations, heme oxygenase-1 expression and disease outcome.  相似文献   

16.
The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.  相似文献   

17.
Using 26 restriction endonucleases, a cleavage site survey was undertaken for DNAs of several unrelated Streptomyces phages SH3, SH5, SH10 and SH13. Only EcoRI was found to produce single cleavage in SH3 and SH10 DNA. The complete maps were prepared for the 2, 9 and 11 fragments of SH10 DNA, as generated by EcoRI, KpnI and BglII, respectively. The evidence is presented that SH10 DNA contains cohesive ends. Moreover, a clearplaque mutant of SH10 was shown to contain a deletion of 790 bp in the right part of the genome, including two KpnI sites.  相似文献   

18.
19.
融合基因 BCR/ABL在慢性粒细胞白血病的恶性转化过程中起着主导作用 .针对融合基因的 3′端构建了一个定点基因打靶质粒 ,p F2 .neo.abl(1 - 4) ,将一段可引发核内 RNA降解的元件 ,URE,定点整合到融合基因 poly(A)位点的上游 .打靶质粒经脂质体转染 K562细胞后 ,在 96孔板上进行 40 0 μg/ml G41 8筛选 ,neor克隆进一步在 2 4孔板上扩增 .以特异性引物经基因组 PCR及Southern印迹分析对阳性克隆进行检测 .研究发现阳性克隆在 96孔板内 3周其增殖状况良好 ,但在 2 4孔板内扩增一周后迅速发生死亡现象 .观察单个阳性克隆在正常培养液增殖情况 ,发现 5d后其细胞周期被完全阻抑 .研究结果说明 ,在转录后期 m RNA水平控制 BCR/ABL融合基因的表达可以抑制慢性粒细胞白血病的恶性转化 .  相似文献   

20.
Doklady Biochemistry and Biophysics - Melatonin is a signaling molecule that mediates multiple stress-dependent reactions. Under photooxidative stress conditions generating intensive ROS...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号