首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic initiation factor 4E (eIF-4E) is a 25-kDa phosphoprotein that binds to the 7-methylguanosine cap of mRNA and acts, along with other eIF-4 polypeptides, to unwind mRNA secondary structure at the 5' terminus. Recent studies have indicated that eIF-4E acts as a protooncogene, but only in its phosphorylated state. In order to determine the role of eIF-4E in oncogenesis, we examined its regulation and expression in cloned rat embryo fibroblasts transformed with the Harvey ras (Ha-ras) oncogene. The expression of Ha-ras increased the rate of protein synthesis but did not increase the levels of eIF-4E mRNA or protein. However, a dramatic increase (7-fold) in phosphate incorporation into eIF-4E was observed. The percentage of eIF-4E in the phosphorylated state was the same in transfected and control cells, indicating that both phosphorylation and dephosphorylation of eIF-4E were increased. Phosphopeptide mapping of eIF-4E from transformed cells indicated a single site of phosphorylation at Ser-53, which is the same as that identified previously in eIF-4E from reticulocytes and HeLa cells. These results indicate that p21ras is part of the signal transduction pathway leading to phosphorylation of eIF-4E. These findings also provide a potential mechanism for cell transformation by p21ras which involves the preferential stimulation of translation of certain mRNAs.  相似文献   

2.
Translation initiation factor eIF-4E, which binds to the 5' cap structure of eukaryotic mRNAs, is believed to play an important role in the control of cell growth. Consistent with this, overexpression of eIF-4E in fibroblasts results in their malignant transformation. The activity of eIF-4E is thought to be regulated by phosphorylation on a single serine residue (Ser-53). Treatment of rat pheochromocytoma (PC12) cells with nerve growth factor (NGF) strongly curtails their growth and causes their differentiation into cells that resemble sympathetic neurons. The present study shows that eIF-4E is rapidly phosphorylated in PC12 cells upon NGF treatment, resulting in a significant increase in the steady-state levels of the phosphorylated protein. In contrast, epidermal growth factor, a factor which elicits a weak mitogenic response in PC12 cells, did not significantly enhance eIF-4E phosphorylation. We also show that although the mitogen and tumor promoter, phorbol 12-myristate-13-acetate, is able to induce phosphorylation of eIF-4E in PC12 cells, the NGF-mediated increase is primarily a protein kinase C-independent response. The NGF-induced enhancement of eIF-4E phosphorylation is abrogated in PC12 cells expressing a dominant inhibitory ras mutant (Ser-17 replaced by Asn), indicating that eIF-4E phosphorylation is dependent on a ras signalling pathway. As phosphorylation of eIF-4E effects translation initiation, these results suggest that NGF-mediated and ras-dependent eIF-4E phosphorylation may play a role in switching the pattern of gene expression during the differentiation of PC12 cells.  相似文献   

3.
4.
The cell cycle inhibitor p15(INK4b) is frequently inactivated by homozygous deletion together with p16(INK4a) and p19(ARF) in some types of tumors. Although the tumor suppressor capability of p15(INK4b) is still questioned, it has been found to be specifically inactivated by hypermethylation in hematopoietic malignancies in the absence of p16(INK4a) alterations. Here we show that, in vitro, p15(INK4b) is a strong inhibitor of cellular transformation by Ras. Surprisingly, p15(INK4b) is induced in cultured cells by oncogenic Ras to an extent similar to that of p16(INK4a), and their expression is associated with premature G(1) arrest and senescence. Ras-dependent induction of these two INK4 genes is mediated mainly by the Raf-Mek-Erk pathway. Studies with activated and dominant negative forms of Ras effectors indicate that the Raf-Mek-Erk pathway is essential for induction of both the p15(INK4b) and p16(INK4a) promoters, although other Ras effector pathways can collaborate, giving rise to a stronger response. Our results indicate that p15(INK4b), by itself, is able to stop cell transformation by Ras and other oncogenes such as Rgr (a new oncogene member of the Ral-GDS family, whose action is mediated through Ras). In fact, embryonic fibroblasts isolated from p15(INK4b) knockout mice are susceptible to transformation by the Ras or Rgr oncogene whereas wild-type embryonic fibroblasts are not. Similarly, p15(INK4b)-deficient mouse embryo fibroblasts are more sensitive than wild-type cells to transformation by a combination of the Rgr and E1A oncogenes. The cell cycle inhibitor p15(INK4b) is therefore involved, at least in some cell types, in the tumor suppressor activity triggered after inappropriate oncogenic Ras activation in the cell.  相似文献   

5.
6.
7.
We have previously shown that cyclin E can malignantly transform primary rat embryo fibroblasts in cooperation with constitutively active Ha-Ras. In addition, we demonstrated that high level cyclin E expression potentiates the development of methyl-nitroso-urea-induced T-cell lymphomas in mice. To further investigate the mechanism underlying cyclin E-mediated malignant transformation, we have performed a mutational analysis of cyclin E function. Here we show that cyclin E mutants defective to form an active kinase complex with Cdk2 are unable to drive cells from G(1) into S phase but can still malignantly transform rat embryo fibroblasts in cooperation with Ha-Ras. In addition, Cdk2 activation is not a prerequisite for the ability of cyclin E to rescue yeast triple cln mutations. We also find that the oncogenic properties of cyclin E did not entirely correspond with its ability to interact with the negative cell cycle regulator p27(Kip1) or the pocket protein p130. These findings suggest that the oncogenic activity of cyclin E does not exclusively rely on its ability as a positive regulator of G(1) progression. Rather, we propose that cyclin E harbors other functions, independent of Cdk2 activation and p27(Kip1) binding, that contribute significantly to its oncogenic activity.  相似文献   

8.
Phosphorylation of Ser 209 is thought to modulate the activity of the cap-binding factor eIF-4E which is a crucial component in the initiation complex for cap-dependent translation of mRNA. We report here the full reconstitution of the p38 Map kinase cascade leading to phosphorylation of eIF-4E in vitro and the generation of antibodies specific for phospho-serine 209 in eIF-4E. These antibodies were used to probe the phosphorylation of eIF-4E in mammalian cells stimulated with mitogens and pro-inflammatory cytokines. Treatment of human dermal fibroblasts with FCS led to a transient hyperphosphorylation, followed by hypophosphorylation and return to normal state phosphorylation at 16 h after the initial stimulation. By using a potent small molecular weight inhibitor of Mnk1, the upstream kinase for eIF-4E, we observed a rapid dephosphorylation of eIF-4E within 45 min after addition of the inhibitor, suggesting a high turnover of phosphate on eIF-4E mediated by Mnk1 and a yet unidentified phosphatase.  相似文献   

9.
10.
11.
HeLa cells were transformed to express antisense RNA against initiation factor eIF-4E mRNA from an inducible promoter. In the absence of inducer, these cells (AS cells) were morphologically similar to control cells but grew four- to sevenfold more slowly. Induction of antisense RNA production was lethal. Both eIF-4E mRNA and protein levels were reduced in proportion to the degree of antisense RNA expression, as were the rates of protein synthesis in vivo and in vitro. Polysomes were disaggregated with a concomitant increase in ribosomal subunits. Translation in vitro was restored by addition of the initiation factor complex eIF-4F but not by eIF-4E alone. Immunological analysis revealed that the p220 component of eIF-4F was decreased in extracts of AS cells and undetectable in AS cells treated with inducer, suggesting that p220 and eIF-4E levels are coordinately regulated. eIF-4A, another component of eIF-4F, was unaltered.  相似文献   

12.
Phosphorylation by protein kinase C of the mRNA cap binding protein purified as part of a cap binding protein complex (eIF-4F) or as a single protein (eIF-4E), has been examined. Significant phosphorylation (up to 1 mol of phosphate/mol of p25 subunit) occurs only when the protein is part of the eIF-4F complex. With purified eIF-4E, using the same conditions, up to 0.1 mol of phosphate can be incorporated. Tryptic phosphopeptide maps show that the site phosphorylated in the Mr 25,000 subunit of eIF-4F (eIF-4F p25) is the same as that modified in purified eIF-4E. Kinetic measurements obtained from initial rates indicate that the Km values for eIF-4F and eIF-4E are similar, although the Vmax is 5-6 times higher for the complex. Dephosphorylation of eIF-4F p25, previously phosphorylated with protein kinase C, occurs in reticulocyte lysate with a half-life of 15-20 min, whereas little dephosphorylation is observed after 15 min with the purified phosphorylated eIF-4E. Phosphorylation of eIF-4F on the p220 and p25 subunits does not affect the stability of the complex as indicated by gel filtration on Sephacryl S-300. However, addition of non-phosphorylated eIF-4E to the phosphorylated complex results in the dissociation of the complex. These results suggest that interaction of p25 with other subunits in the complex greatly affects phosphorylation/dephosphorylation of p25. Since the rate of phosphorylation/dephosphorylation is significantly greater in the complex, regulation of the cap binding protein by phosphorylation appears to occur primarily on eIF-4F.  相似文献   

13.
14.
A comparative study was made of reactive oxygen species (ROS) in rat embryo fibroblasts and their transformants. Primary rat embryo fibroblasts (REF), REF transformed by the complementing oncogenes E1A plus cHa-ras (cell line E1A + Ras), and REF transformed by E1A plus E1B-19 kDa (cell line E1A + E1B) were studied. ROS generation was measured with microfluorometric assay using fluorescent probe 2',7'-dichlorofluorescin diacetate. It has been shown that the block of REF and E1A + 1B cells in the G1/S under serum-starved conditions (0.5% serum) for 24-48 h was paralleled by a decrease in ROS generation. Activation of serum-starved REF and E1A + 1B cells with 10% serum resulted in reactivation of cell cycle and gradual increase in ROS generation. The maximum intracellular level of ROS correlated in time with the phase of DNA synthesis. Serum-starved E1A + Ras cells were not stopped in the G1/S and ROS production of these cells was not dependent on serum growth factors. The prolonged cultivation of E1A + Ras cells in the medium with low serum content (0.5%) caused a sharp increase in ROS generation, which was accompanied by apoptotic death.  相似文献   

15.
The mammalian target of rapamycin, mTOR, regulates cell growth and proliferation. Here we show that the initiation factor of translation (eIF-4E), a downstream effector of mTOR, has oncogenic effects in vivo and cooperates with c-Myc in B-cell lymphomagenesis. We found that c-Myc overrides eIF-4E-induced cellular senescence, whereas eIF-4E antagonizes c-Myc-dependent apoptosis in vivo. Our results implicate activation of eIF-4E as a key event in oncogenic transformation by phosphoinositide-3 kinase and Akt.  相似文献   

16.
Rat embryo fibroblasts transformed with the HPV-16 E7 gene and the activated c-H-ras gene fall into two distinct phenotypic classes. At high cell density, clones of one class form colonies in methylcellulose supplemented with low serum; at low cell density, these cells display responsiveness to mitogenic factors present in serum-free conditioned medium from rat embryo fibroblasts. In contrast, clones of the second class exhibit an absolute dependency on growth factors present in serum at all cell densities in the methylcellulose colony assay and fail to respond to conditioned medium. We find that the status of the endogenous p53 gene is tightly correlated with these two classes of clones. Clones of the first class contain missense mutations in the p53 gene and have lost the wild-type allele. Clones of the second class express wild-type p53 protein. The importance of mutant p53 expression in reducing the growth factor dependency of transformed clones was confirmed in a separate series of experiments in which rat embryo fibroblasts were transformed with three genes, E7 + ras + mutant p53. The growth behaviour of these triply transfected clones was similar to that of the E7 + ras clones expressing endogenous mutant p53. We demonstrate that the enhanced proliferation of E7 + ras clones expressing mutant p53 protein involves an autocrine mechanism.  相似文献   

17.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

18.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to arrest the cell cycle at G1/S after damage. Two-parameter fluorescent-activated cell sorting (FACS) with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A + E1B-19 kDa oncogenes. This was due to selective inhibition of CycIE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A on coproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin-kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号