首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[1-14C]Dolichol mixed in vitro with rat serum and injected intravenously into rats was rapidly cleared from the circulation in a manner consistent with a two-compartment model. About 80% of the radioactivity recovered from animals killed after 1 day was in the liver, with smaller amounts being found in lung, carcass (internal organs removed), gastrointestinal tract and contents, and spleen. The kidneys, testes and heart contained little radioactivity, and the brain did not appear to take up any [1-14C]dolichol. The half-life for the turnover of radioactivity from [1-14C]dolichol in tissues varied considerably, being 2 days for the lung, 17 for liver and about 50 days for the carcass. After 1 day, and also after 4 and 21 days, most of the radioactivity in all tissues was as [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester, although a small amount of incorporation of [1-14C]dolichol radioactivity into phospholipids was also observed. Faeces collected over the first 4 days after injection contained 13% of the [1-14C]dolichol dose, but urine and expired air contained only small amounts of radioactivity. Radioactivity in faeces was nearly all as unchanged [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester. The [1-14C]dolichol remaining in liver after 21 days appeared to be in a pool (possibly lysosomes) where most of it was not subject to excretion.  相似文献   

2.
[1-14C]Dolichol was mixed in vitro with sunflower seed oil and intubated into rats. Radioactivity began to appear in the blood at 3 h and peaked after about 6 h. The absorbed radioactivity was rapidly cleared from the blood. At 7.5 h postintubation two thirds of the radioactivity in the serum was associated with chylomicrons and about one quarter with the high density lipoproteins. At 12 h the proportion of the radioactivity in the chylomicrons had fallen to one third and that in the high density lipoproteins had increased to one half of the total. Less than 0.02% of the dose was found in the tissues after 12 h. Liver and blood each contained about one third of the total, with smaller amounts in the lungs and spleen. The heart, testes, brain, and kidneys contained only traces of radioactivity. After 12 h most of the radioactivity in the tissues and feces was present as [1-14C]dolichol. The radioactive compounds in the urine (about 0.05% of the dose) were more polar than [1-14C]dolichol as determined by thin-layer chromatography.  相似文献   

3.
Mouse kidney and liver were found to increase their levels of radioactivity above that of serum from 2 to 60 min after administration of [6-14C]orotic acid. In spleen, thymus and brain, the radioactivity level reached a maximum soon after the injection and then decreased, as did that in serum. Sixty minutes after the injection, 44% of the administered isotope dose was found in the kidneys, 22% in the liver and 0.75% in the spleen. The 14C activity in liver UTP increased rapidly and then remained constant for 60 min. The ratio between the activities in uridine phosphates and UDP-sugars was 3:4 from 10- 60 min after injection. In the liver and kidneys, the RNA 14C activities at 60 min after injection were 15% of the activity in their acid-soluble fractions. Intraperitoneal administration was found to be preferable to intravenous administration for studies on nucleotides and RNA in mouse liver, due to the delayed incorporation of the [14C]orotic acid activity into the nucleotide pool.  相似文献   

4.
Following the intravenous injection of nanomolar amounts of [3H]dolichol into rats, the radioactivity rapidly appeared in the high-density lipoprotein fraction of the plasma and circulated with a half-life of about 9 h. A fraction of the injected activity was excreted in the feces, presumably through the bile, but evidence was obtained that little oxidative breakdown of dolichol occurred. All tissues assayed acquired radioactivity, but the liver attained the highest specific activity and the largest percentage of the total radioactive dolichol. Subcellular fractionation of the liver revealed that mitochondrial preparations contained the bulk of the labeled dolichol at all times tested up to 40 h after injection. Disruption of the mitochondrial structure by two different techniques permitted the isolation of inner and outer membrane fractions and it was found that the [3H]dolichol was concentrated in the outer membrane fraction. The significance of these findings is discussed.  相似文献   

5.
Gluconeogenesis from lactate in the developing rat. Studies in vivo   总被引:5,自引:5,他引:0       下载免费PDF全文
1. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose, liver glycogen and skeletal-muscle glycogen were measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into 2-, 10- and 30-day-old rats. 2. Between 15 and 60min after the injection of the l-[U-(14)C]lactate, the specific radioactivity of plasma lactate decreased with a half-life of 20-33min in animals at all three ages. 3. At all times after injection examined, the specific radioactivity of plasma glucose of the 2- and 10-day-old rats was at least fourfold greater than that of the 30-day-old rats. 4. Although (14)C was incorporated into liver glycogen the amount incorporated was always less than 5% of that present in plasma glucose. 5. The results are discussed with reference to the factors that may influence the rate of incorporation of (14)C into plasma glucose, and it is concluded that the rate of gluconeogenesis in the 2- and 10-day-old suckling rat is at least twice that of the weaned 30-day-old animal.  相似文献   

6.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

7.
The metabolism of [14C]nicotine in the cat   总被引:2,自引:0,他引:2       下载免费PDF全文
The metabolism of [2'-(14)C]nicotine given as an intravenous injection in small doses to anaesthetized and unanaesthetized cats has been studied. A method is described for the quantitative determination of [(14)C]nicotine and [(14)C]cotinine in tissues and body fluids. Nanogram amounts of these compounds have been detected. After a single dose of 40mug. of [(14)C]nicotine/kg., 55% of the injected radioactivity was excreted in the urine within 24hr., but only 1% of this radioactivity was unchanged nicotine. [(14)C]Nicotine is metabolized extremely rapidly, [(14)C]cotinine appearing in the blood within 2.5min. of intravenous injection. [(14)C]Nicotine accumulates rapidly in the brain and 15min. after injection 90% of the radioactivity still represents [(14)C]nicotine. Metabolites of [(14)C]nicotine have been identified in liver and urine extracts. [(14)C]Nicotine-1'-oxide has been detected in both liver and urine.  相似文献   

8.
Glucose metabolism in the newborn rat. Temporal studies in vivo   总被引:14,自引:12,他引:2       下载免费PDF全文
1. The concentrations of plasma d-glucose, l-lactate, free fatty acids and ketone bodies and of liver glycogen were measured in caesarian-delivered newborn rats at time-intervals up to 4h after delivery. Glucose and lactate concentrations decreased markedly during the first hours after delivery, but there was a delay of 60-90min before significant glycogen mobilization occurred. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into caesarian-delivered rats at 0, 1 and 2h after delivery. Calculations revealed that there was an appreciable rate of glucose formation at all ages studied, but immediately after delivery this was exceeded by the rate of glucose utilization. Around 2h post partum the rate of glucose utilization decreased dramatically and this coincided with a reversal of the immediately postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose and liver glycogen was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into rats immediately after delivery. The logarithm of the specific radioactivity of plasma l-[U-(14)C]lactate decreased linearly with time for at least 60min after injection and the calculated rate of lactate utilization exceeded the rate of lactate formation. 4. (14)C incorporation into plasma d-glucose was maximal from 30-60min after injection of l-[U-(14)C]lactate and the amount incorporated at 60min was 23% of that present in plasma lactate. Although (14)C was also incorporated into liver glycogen the amount was always less than 3% of that present in plasma glucose. 5. The results are discussed in relationship to the adaptation of the newly born rat to the extra-uterine environment and the possible involvement of gluconeogenesis at this time before feeding is established.  相似文献   

9.
The tissue concentrations and distribution of radioactivity present in retinol and its metabolites were investigated in vitamin A-deficient rats 24h after injection of physiological doses (10mug) of [6, 7-14C2, 11,12-3H2] retinol. The highest concentration of radioactivity was observed in the adrenals, followed by kidney, spleen, liver, intestine and blood. The total radioactivity was greatest in urine, followed in descending order by liver, kidney, blood and intestine. The 14C/3H ratios of crude light-petroleum extracts in the liver, intestines, lungs, heart and faeces were similar to the ratio of the injected retinol dispersion. However, the 14C/3H ratios in the adrenals, kidney, spleen, blood, brain and urine were quite different from that of injected retinol. Alumina chromatography of the kidney and intestinal extracts demonstrated that retinol and retinyl palmitate are the principal forms of vitamin A present. However, alumina chromatography of the liver extract did not reveal the presence of retinol but yielded a major compound with a low 14C/3H ratio. That this compound was not retinol was shown by its inability to react with ethanolic HC1 to yield anhydroretinol. The distribution of radioactivity in ether-soluble, acidic and water-soluble fractions of urine indicated that most of the radioactivity was present in the acidic and water-soluble fractions. The 14C/3H ratios in ether-soluble and acidic fractions were higher than that of injected retinol, whereas in the water-soluble fraction the ratio was similar to the injected material.  相似文献   

10.
Rats were injected intracerebroventricularly (i.c.v.) or i.v. with [14C]homocarnosine (250 nmol). Distribution of the dipeptide in brain structures, transport from the brain to the blood, distribution in peripheral organs, and excretion in the urine were studied by measuring radioactivity in tissue, plasma, and urine samples by liquid scintillation counting 15–120 min after injection. After i.c.v. injection, [14C]homocarnosine was taken up into all parts of the brain investigated (highest uptake in structures close to the site of injection), it was transported to the blood, and radioactive substances were found in low concentration in muscle, spleen, and liver, in high concentration in the kidneys, and very high concentration in the urine. Investigations using high pressure liquid chromatography (HPLC) showed that no degradation took place in the brain, all radioactivity was found in the homocarnosine fraction. In the plasma 86% of the radioactivity was found in the GABA fraction presumed to be formed by cleavage of the peptide, while in the kidneys 35% and in the urine 40% was found in the GABA fraction. After i.v. injection of [14C]homocarnosine, no radioactivity was measured in hippocampus, striatum, cerebellum and cerebral cortex 15 min after injection, however, 60 min after injection a very low activity was detected in these structures (estimated intravascular radioactivity subtracted). A low activity was also measured in the spinal cord both 15 and 60 min after injection. When homocarnosine and GABA were separated on HPLC, all radioactivity in brain tissue was found in the GABA fraction, indicating either that [14C]homocarnosine did not cross the blood-brain barrier in amounts that could be measured with the method used, or that peptide entering the brain was rapidly transported back to the blood. [14C]Homocarnosine was not taken up either into crude synaptosomal preparations from hippocampus, striatum, cerebellum, cortex and spinal cord, or into slices prepared from the hippocampus and striatum. Transport from the brain to the kidneys and excretion in the urine seems to be a major route for disposal of this peptide in the rat.  相似文献   

11.
A comparison between [14C]aflatoxin B1 (AFB1) and [14C]aflatoxin G1 (AFG1) binding to rat liver and kidney cellular macromolecules has shown AFG1-DNA and-ribosomal RNA binding to be lower in both organs. For both mycotoxins more was bound to nucleic acids than to protein. Two hours after intraperitoneal injection (60 microgram/100 g) of [14C] AFB1, 40 ng, 151 ng/mg. Loss of radioactivity bound to liver DNA for both [14C]AFB1 and protein respectively and for [14C]AFG1 the respective figures were 10, 7 and 1 ng/mg. Loss of liver bound radioactivity to DNA for both [14C]AFG1 and [14C]AFG1 appeared to be biphasic indicating that an enzymic DNA repair process may be operating. In vitro binding studies also showed less AFG1 was bound to exogenous DNA after microsomal activation than AFB1. This difference was not a result of differences in the chemical reactivity of the "ultimate" electrophilic species, the respective expoxides, since chemical activation studies using 3-chloroperbenzoic acid showed similar amounts of AFG1 and AFB1 to be converted to the epoxides and to bind to DNA. Studies on the distribution coefficients of the two mycotoxins showed AFB1 to be more lipophilic than AFG1 and this may be an important factor in determining the weaker carcinogenicity of the latter compound. Characterisation of the major AFG1-DNA adduct formed in vitro, in vivo and after peracid oxidation showed it to have the structure trans-9,10-dihydro-9-(7-guanyl)-10-hydroxy-aflatoxin G1. This adduct is similar to that obtained from AFB1 by activation in vivo, in vitro and after peracid oxidation.  相似文献   

12.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

13.
1. The nucleic acid metabolism in the pyridoxine-deficient rat has been investigated through studies on the incorporation of radioactivity from various isotopically labelled compounds into liver and spleen DNA and RNA. 2. In pyridoxine deficiency, the incorporation of radioactivity from sodium [14C]formate was apparently increased. The magnitude of this effect on incorporation into liver RNA and DNA and spleen RNA was approximately the same. The incorporation into spleen DNA was enhanced to a much greater degree. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [14C]formate. 3. In pyridoxine deficiency, the incorporation of radioactivity from dl-[3-14C]serine, [8-14C]adenine, [Me-3H]thymidine and [2-14C]deoxyuridine was decreased. The incorporation of radioactivity from l-[Me-14C]methionine was not affected. No noteworthy differences in the effect of pyridoxine deficiency on the incorporation of radioactivity from dl-[3-14C]serine into DNA and RNA were observed, whereas the effect of the deficiency on the incorporation of radioactivity from [8-14C]adenine into spleen DNA was somewhat greater than that into spleen RNA. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [3-14C]serine and [8-14C]adenine. 4. The adverse effects of pyridoxine deficiency on the biosynthesis of nucleic acids and cell multiplication are discussed in relation to the role of pyridoxal phosphate in the production of C1 units via the serine-hydroxymethylase reaction.  相似文献   

14.
P Favarger  S Rous  S Bas 《Biochimie》1979,61(1):101-107
Mice received intravenously [1- or 2-14C]acetate, [1-, 2- or 3-14C] or [2-14C]pyruvate and were killed 1, 3, 5 or 15 min later. The radioactivity of CO2 or HCO3- of liver or carcass as well as the radioactivity of blood glucose were measured. The ratio of the radioactivity found in these compounds after [3-14C] or [2-14C-A1pyruvate injection suggests that in the fed aminals: 1. the decarboxylation of the pyruvate was more rapid than its carboxylation, 2. most of the neosynthesized glucose was derived from pyruvate molecules which had undergone a decarboxylation followed by a condensation to citrate, 3. 1/4 to 1/3 of the pyruvate was carboxylated and 2/3 to 3/4 was decarboxylated in animals receiving a diet poor in fats.  相似文献   

15.
[1-14C]Palmitic and [9,10-3H]palmitic acids were injected into the femoral artery of fetal sheep in utero about one month preparturition. The experiment was terminated after 5, 15 or 30 min when the main tissues were removed for analysis of the lipid components. 5 min after injection of the label, most was recovered in the plasma but increasing amounts were recovered later in the liver and heart. Selective loss of 14C-label occurred such that in the plasma, 30 min after injection, the ratio of 3H:14C had changed from 1:1 to 8.4:1. Increasing amounts of the labelled lipid were recovered in esterified form with time after injection, and the 3H:14C ratio differed markedly in specific lipids and tissues. Most of the label was recovered in palmitic acid, but some was also present in myristic and octadecenoic acids. Some evidence was obtained that the latter may have been the delta 11-isomer, which was found in much greater amounts in fetal than maternal tissues. It appears that partial-oxidation and resynthesis of fatty acids occurs in a concerted manner at a rapid rate in fetal sheep. The phenomenon has important implications for the interpretation of the results of much previous work with fetal animals in vivo.  相似文献   

16.
[1-3H]Dolichol was intraperitoneally incubated with mouse leukemia Lcb 35 cells. The radioactive lipid taken up by the cells was subsequently recovered in two fractions separated by sucrose density gradient centrifugation: a particular, most probably, lysosomal fraction and a cytoplasmic one. Thin-layer chromatography of radioactive lipids present in both fractions revealed that majority of dolichol was unchanged and only a small part esterified with fatty acids. Distribution of dolichol in various mouse organs was examined. Of all the organs examined, spleen accumulated the highest amount of radioactivity.  相似文献   

17.
1. Ten-week old broiler females were force-fed (FF) for 3 days or 3 weeks. 2. Control livers were lighter in weight and contained less total lipid, neutral lipid and phospholipid than either FF group, which did not differ. 3. Radioactivity incorporated into liver neutral lipid fractions from 1-[14C]acetate injection was greater in birds FF 3 weeks than controls. Those FF 3 days were intermediate. In all groups, the triglyceride fraction contained 90-94% of isolated radioactivity, the cholesterol fraction 4-8% and the cholesterol ester fraction 1-2%. 4. Plasma lipids were elevated in the birds FF for 3 weeks, but not in those FF 3 days. After injection of 1-[14C]acetate, plasma lipid specific radioactivities were not different between the 3 groups at 20 and 60 min post injection, but were greater in the controls at 120 min.  相似文献   

18.
The metabolism of ketone bodies by rat brain was studied in vivo. Rats starved for 48h were given either d-beta-hydroxy[3-(14)C]butyrate or [3-(14)C]acetoacetate by intravenous injection and killed after 3 or 10min. Total radioactivity in the acid-soluble material of the brain and the specific radioactivities of the brain amino acids glutamate, glutamine, aspartate and gamma-aminobutyrate were determined. A group of fed animals were also given d-beta-hydroxy[3-(14)C]butyrate. In the brains of all animals (14)C was present in the acid-soluble material and the specific radioactivity of glutamate was greater than that of glutamine.  相似文献   

19.
Dolichyl phosphate, dolichol C80-105 (dolichol 17:dihydroheptadecaprenol-dolichol 21:dihydrohexeicosaprenol), and dolichol C55 (dolichol 11:dihydroundecaprenol) were separated by anion-exchange paper chromatography. Squalene, sterols, phospholipids, anionic glycolipids, and glycerol did not migrate as dolichyl phosphate, dolichol C80-105, and dolichol C55 under our elution conditions. However, since the Rf of triglycerides was similar to that of dolichol C80-105, saponification, prior to chromatography, removed traces of triglycerides. Silica gel thin-layer chromatography (TLC) allowed the separation of dolichol C80-105 from dolichol C55, whereas dolichyl phosphate was eluted with other lipids. Incubation of spontaneously transformed cells derived from rat astrocytes primary cultures with [2-14C]acetate, saponification of the extracted lipids, and anion-exchange paper chromatography revealed the presence of radioactive dolichyl phosphate and dolichol C80-105 (15 pmol/mg protein). Extraction of labeled dolichyl phosphate followed by acid phosphatase treatment and subsequent analysis on TLC confirmed the identity of dolichyl phosphate since all the radioactivity was associated with dolichol C55. Treatment of the transformed cells with 30 microM 7-ketocholesterol or 7 beta-hydroxycholesterol stimulated markedly (two- to threefold) the incorporation of [2-14C]-acetate in both dolichol C80-105 and dolichyl phosphate. These data demonstrate that anion-exchange paper chromatography is technically suitable for the separation and analysis of dolichol C55, dolichol C80-105, and dolichyl phosphate in cultured cells prelabeled with radioactive precursors.  相似文献   

20.
The apparent volume of the biliary tree (ABV) in the dog was determined by measuring the mean biliary transit time of injected [14C]taurocholate ([14C]TC). After bolus injection of [14C]TC, entry of bile salt into the lumen of the biliary tree is signaled by an increase in bile flow. The volume of bile collected at the common duct from onset of choleresis until maximal concentration of 14C radioactivity is reached in bile minus the calculated quantity of bile that contains radioactivity and the cannula volume yields a value for the volume of the biliary tree present just prior to injection of [14C]TC. The mean value for ABV in 19 dogs was 2.49 +/- 0.65 microL/g liver (mean +/- SD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号