首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M P Maguire 《Génome》1995,38(3):558-565
A pair of stably transmitted supernumerary chromosomes of unknown source has been found in a maize stock carrying a desynaptic mutant. The presence of the supernumerary chromosome appears to be unrelated to the meiotic mutant, but is believed to have been derived from a translocated B chromosome contaminant. The supernumerary chromosomes carry a segment of a A chromosome in this stock where there appear to be two normal copies of each of the 10 A chromosomes. Thus, this A chromosome segment is present in quadruplicate. Surprisingly, a quadrivalent configuration is formed in most microsporocytes, which involves not only synapsis but also chiasma formation in the A chromosome segments involved in the quadrivalent. This represents a strong preferential pairing of supernumeraries with the normal A chromosome segments. Such nonrandom association and crossing over might provide information on the nature of early homologue alignment at meiosis.  相似文献   

2.
Karyological analysis of 6 cell lines with distinct tumorigenic properties of mouse strains C3H/He and CBA/Ca has been carried out using differential chromosome staining. All the cell lines are characterized by a decreased number of copies of normal chromosome 7, the increased number of normal copies of chromosome 10 being specific of the cell lines with intermediate tumorigenicity. Cell lines with maximum tumorigenicity differed from all other lines by the increased number of copies of chromosome 5 and by the decreased number of copies of chromosome 6. A wide independent variability was observed in the number of chromosomes and of several types of abnormal chromosomes throughout the neoplastic evolution of cells, to begin from the early immortal passages. But the proportion of normal chromosomes per cell in the studied lines revealed relatively stable values. The potential phenotypical heterogenicity of the lines with maximum tumorigenicity, expressed in their clonal progeny, was associated with the instability in the number of chromosome 15 copies in cells of these lines. It is concluded that multiple genetic events are required in the spontaneous neoplastic evolution of fibroblasts, and only specific traits of the karyotypic instability, associated with the variability of the number of copies of specific chromosomes, may constitute the genetic basis for the above process.  相似文献   

3.
Svartman M  Stone G  Stanyon R 《Genomics》2005,85(4):425-430
Polyploidy, the presence of more than two chromosome sets, is common in plants, but extremely rare in animals. The absence of polyploid organisms with well-differentiated sex chromosomes suggests that the disruption of the dosage between autosomes and sex chromosomes is incompatible with normal development. Thus, the announcement in 1999 of tetraploidy in a mammal, the South American red vizcacha rat Tympanoctomys barrerae, provoked great interest, even though the definitive proof of tetraploidy, the presence of four copies of each chromosome, was never provided. Here we used classical and molecular cytogenetics to test the ploidy level of T. barrerae and demonstrate that only two copies of each chromosome are present in this karyotype. The red vizcacha rat is clearly diploid and the amplification and dispersion of repetitive sequences best explain the large genome size of this mammal. Thus, polyploidy in mammals remains as unlikely as it has always been.  相似文献   

4.
During the last years it became obvious that a lot of families of long-range repetitive DNA elements are located within the genomes of mammals. The principles underlying the evolution of such families, therefore, may have a greater impact than anticipated on the evolution of the mammalian genome as a whole. One of these families, called chAB4, is represented with about 50 copies within the human and the chimpanzee genomes and with only a few copies in the genomes of gorilla, orang-utan, and gibbon. Members of chAB4 are located on 10 different human chromosomes. FISH of chAB4-specific probes to chromosome preparations of the great apes showed that chAB4 is located, with only one exception, at orthologous places in the human and the chimpanzee genome. About half the copies in the human genome belong to two species-specific subfamilies that evolved after the divergence of the human and the chimpanzee lineages. The analysis of chAB4-specific PCR-products derived from DNA of rodent/human cell hybrids showed that members of the two human-specific subfamilies can be found on 9 of the 10 chAB4-carrying chromosomes. Taken together, these results demonstrate that the members of DNA sequence families can evolve as a unit despite their location at multiple sites on different chromosomes. The concerted evolution of the family members is a result of frequent exchanges of DNA sequences between copies located on different chromosomes. Interchromosomal exchanges apparently take place without greater alterations in chromosome structure. Received: 20 March 1997 / Accepted: 13 September 1997  相似文献   

5.
P Hieter  C Mann  M Snyder  R W Davis 《Cell》1985,40(2):381-392
A colony color assay that measures chromosome stability is described and is used to study several parameters affecting the mitotic maintenance of yeast chromosomes, including ARS function, CEN function, and chromosome size. A cloned ochre-suppressing form of a tRNA gene, SUP11, serves as a marker on natural and in vitro-constructed chromosomes. In diploid strains homozygous for an ochre mutation in ade2, cells carrying no copies of the SUP11 gene are red, those carrying one copy are pink, and those carrying two or more copies are white. Thus, the degree of red sectoring in colonies reflects the frequency of mitotic chromosome loss. The assay also distinguishes between chromosome loss (1:0 segregation) and nondisjunction (2:0 segregation). The most dramatic effect on improving mitotic stability is caused by increasing chromosome size. Circular chromosomes increase in stability through a size range up to approximately 100 kb, but do not continue to be stabilized above this value. However, linear chromosomes continue to increase in mitotic stability throughout the size range tested (up to 137 kb). It is possible that the mitotic stability of linear chromosomes is proportional to chromosome length, up to a plateau value that has not yet been reached in our synthetic constructions.  相似文献   

6.
R. T. Surosky  B. K. Tye 《Genetics》1988,119(2):273-287
We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.  相似文献   

7.
Two chromosomes that undergo nonrandom changes in carcinoma of the cervix and have been studied for several decades in this laboratory are discussed. The first, chromosome 5, is discussed in view of the frequent appearance of an isochromosome for 5p, often in two or more copies and commonly associated with fewer that the expected number of normal copies of this chromosome. The second is chromosome 17, where a translocation involving another chromosome may result in a 17p+, and the significant change appears to be a loss from 17p that may include the p53 gene (TP53) and/or other tumor-suppressor genes located on this chromosome arm.  相似文献   

8.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

9.
Karyological analysis of 6 lines with distinct tumorigenic properties of mouse strains C3H/He and C57BL/6 has been carried out using a differential staining of chromosomes. The number of normal copies of chromosomes varied in all the investigated cell lines. The more and the less stable chromosomes different from line to line. All the cell lines were characterized by decreased numbers of copies of normal chromosome 7; a decreased number of normal copies of chromosome 2 and 16 was detected in the course of the cell spontaneous neoplastic evolution. The decreased number of normal copies of chromosomes 8, 12 and X, and the increased number of normal copies of chromosome 10 were specific of the cell lines with intermediate tumorigenicity. The maximum tumorigenic cell lines differed from all other lines by increased numbers of copies of chromosomes 4 and 5, and by a decrease in copy number of chromosome 6. The data obtained are discussed in terms of the search of the regularity of karyotypic changes in the course of the cell neoplastic evolution.  相似文献   

10.
Kenneth J. Livak 《Genetics》1984,107(4):611-634
The D. melanogaster DNA segment in the recombinant phage lambda Dm2L1 contains at least eight copies of a tandemly repeated 1250-base pair (bp) sequence (henceforth called the 2L1 sequence). Testes from XO D. melanogaster males contain an abundant 800-base RNA species that is homologous to a 520-bp region of the 2L1 sequence. Blotting experiments show that the 2L1 sequence is repeated in the D. melanogaster genome and is present on both the X and Y chromosomes. With the use of X-Y translocations, the 2L1 sequence has been mapped to a region between kl-1 and kl-2 on the long arm of the Y chromosome. In Oregon-R wild type there are an estimated 200 copies of the 2L1 sequence on the X chromosome and probably at least 80 copies of the Y chromosome. In some other strains the repetition frequency on the Y chromosome is about the same, but the copy number on the X chromosome is much reduced. On the basis of the five strains investigated, there is a correlation between copy number of the 2L1 sequence on the X chromosome and the presence of a particular allele of the Stellate locus (Ste; 1-45.7). It seems that low copy number corresponds to Ste+ and high copy number corresponds to Ste. The Ste locus determines whether single or star-shaped crystals are observed in the spermatocytes of XO males. Studies using D. simulans and D. mauritiana DNA show that the 2L1 sequence is homologous to restriction fragments in male DNA but not female DNA, indicating that this sequence is present only on the Y chromosome in these two species. In DNA derived from D. erecta, D. teissieri and D. yakuba, there is very little, if any, hybridization with the 2L1 sequence probe.  相似文献   

11.
Atypical lipomatous tumor (ALT) is an intermediate malignant mesenchymal tumor that is characterized by supernumerary ring chromosomes and/or giant rod-shaped marker chromosomes (RGMC). Fluorescence in situ hybridization (FISH) and molecular genetic analyses have disclosed that the RGMCs always contain amplified sequences from the long arm of chromosome 12. Typically, RGMCs are the sole clonal changes and so far no deletions or other morphologic aberrations of the two normal-appearing chromosomes 12 that invariably are present have been detected. The mechanisms behind the formation of the RGMCs are unknown, but it could be hypothesized that RGMC formation is preceded by trisomy 12 or, alternatively, that ring formation of one chromosome 12 is followed by duplication of the remaining homolog. The latter scenario would always result in isodisomy for the two normal-appearing chromosomes 12, whereas the former would yield isodisomy in one-third of the cases. In order to investigate these possible mechanisms behind ring formation, we studied polymorphic loci on chromosome 12 in 14 cases of ALT showing one or more supernumerary ring chromosomes and few or no other clonal aberrations at cytogenetic analysis. The molecular genetic analyses showed that the tumor cells always retained both parental copies of chromosome 12, thus refuting the trisomy 12 and duplication hypotheses.  相似文献   

12.
Karyological analysis of mouse fibroblasts L929 has been carried out using the differential staining of chromosomes (44-58% of the total chromosome number), and their derivatives, i.e. markers of the particular clone. Normal, non-rearranged chromosomes are mainly present in 1-3 copies, while the markers are available as a single copy only. The frequency of occurrence of diverse chromosomes differs from cell to cell, the total number of chromosomes in the cells being not constant. The modal class consists of 62-64 chromosomes. Two new chromosome markers were found after a repeated karyological analysis one year after the cultivation of cells under the standard conditions. A possible role of some chromosome aberrations in the process of transformation of mouse fibroblasts is discussed. The particular attention is given to alteration of chromosome 15.  相似文献   

13.
A macrorestriction map representing the complete physical map of the Rhodobacter sphaeroides 2.4.1 chromosomes has been constructed by ordering the chromosomal DNA fragments from total genomic DNA digested with the restriction endonucleases AseI, SpeI, DraI, and SnaBI. Junction fragments and multiple restriction endonuclease digestions of the chromosomal DNAs derived from wild-type and various mutant strains, in conjunction with Southern hybridization analysis, have been used to order all of the chromosomal DNA fragments. Our results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb). Both chromosome I (3,046 kb) and chromosome II (914 kb) contain rRNA cistrons. It appears that only a single copy of the rRNA genes is contained on chromosome I (rrnA) and that two copies are present on chromosome II (rrnB, rrnC). Additionally, genes for glyceraldehyde 3-phosphate dehydrogenase (gapB) and delta-aminolevulinic acid synthase (hemT) are found on chromosome II. In each instance, there appears to be a second copy of each of these genes on chromosome I, but the extent of the DNA homology is very low. Genes giving rise to enzymes involved in CO2 fixation and linked to the gene encoding the form I enzyme (i.e., the form I region) are on chromosome I, whereas those genes representing the form II region are on chromosome II. The complete physical and partial genetic maps for each chromosome are presented.  相似文献   

14.
Chromosomal distribution of cloned human alpha-satellite DNA alpha R1-6 has been studied by in situ hybridization technique. The sequence under study has been shown to be predominantly located in the centromeric regions of chromosomes 13 and 21. Intercellular variability of labelling patterns in every person under analysis being insignificant, there exists strong individual variability of interchromosomal distribution of the satellite. This variability leads to the differences of the chromosome labelling density (i.e. the number of satellite DNA copies) both between and within chromosome pairs. The difference in the copy number between two homologues chromosomes, 13 and 21 reaches up to 5 times. No correlation between nondisjunction and the number of copies of alpha-satellite DNA was found. Analysis of individual distribution of satellite between homologues of chromosome 21 provides new possibilities for determination of the origin of extra chromosome in the patients with trisomy 21.  相似文献   

15.
Supernumerary chromosomes, termed "conditionally dispensable" (CD) chromosomes, are known in Nectria haematococca. Because these CD chromosomes had been revealed solely by pulsed-field gel electrophoresis, their morphological properties were unknown. In this study, we visualized a 1.6-Mb CD chromosome of this fungus by three different types of fluorescence in situ hybridization. The CD chromosome at mitotic metaphase was similar in its appearance to the other chromosomes in the genome. Heterochromatic condensation was not distinct in the CD chromosome, suggesting that it is primarily euchromatic. It was also evident that the CD chromosome is unique and not a duplicate of other chromosomes in the genome. At interphase and prophase, the CD chromosome was not dispersed throughout the nucleus, but occupied a limited domain. Occasionally, occurrence of two distinct unattached copies of the CD chromosome were observed during interphase and metaphase.  相似文献   

16.
Chromosome microdissection and the reverse FISH technique is one of the most useful methods for the identification of structurally abnormal chromosomes. In particular, the laser microbeam microdissection (LMM) method allows rapid isolation of a target chromosome or a specific region of chromosomes without damage of genetic materials and contamination. Isolated chromosomes were directly amplified by the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), and then the FISH probes labeled with spectrum green- or spectrum red-dUTP were generated by nick-translation. Whole chromosome painting (WCP) probes were successfully generated from only 5 copies of the chromosome. With this method, we produced 24 WCP probes for each human chromosome. We also tried to characterize a marker chromosome, which seemed to be originated from chromosome 11 on conventional banding technique. The marker chromosomes were isolated by the LMM method and analyzed by reverse FISH. We elucidated that the marker chromosome was originated from the short arm of chromosome 5 (5p11-->pter). A fully automated and computer-controlled LMM method is a very simple laboratory procedure, and enables rapid and precise characterization of various chromosome abnormalities.  相似文献   

17.
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.  相似文献   

18.
A supernumerary chromosome called a conditionally dispensable chromosome (CDC) is essential for pathogenicity of Nectria haematococca on pea. Among several CDCs discovered in N. haematococca, the PDA1 CDC that harbors the pisatin demethylation gene PDA1 is one of the best-studied CDCs and serves as a model for plant-pathogenic fungi. Although the presence of multiple copies is usual for supernumerary chromosomes in other eukaryotes, this possibility has not been examined well for any CDCs in N. haematococca. In this study, we produced strains with multiple copies of the PDA1 CDC by protoplast fusion and analyzed dosage effects of this chromosome. Using multiple methods, including cytological chromosome counting and fluorescence in situ hybridization, the fusion products between two transformants derived from the same strain that bears a single PDA1 CDC were shown to contain two PDA1 CDCs from both transformants and estimated to be haploid resulting from the deletion of an extra set or sets of A chromosomes in the fused nuclei. In phenotype assays, dosage effects of PDA1 CDC in the fusion products were evident as increased virulence and homoserine-utilizing ability compared with the parents. In a separate fusion experiment, PDA1 CDC accumulated up to four copies in a haploid genome.  相似文献   

19.
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.  相似文献   

20.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that maps to human chromosome 4q35. FSHD is tightly linked to a polymorphic 3.3-kb tandem repeat locus, D4Z4. D4Z4 is a complex repeat: it contains a novel homeobox sequence and two other repetitive sequence motifs. In most sporadic FSHD cases, a specific DNA rearrangement, deletion of copies of the repeat at D4Z4, is associated with development of the disease. However, no expressed sequences from D4Z4 have been identified. We have previously shown that there are other loci similar to D4Z4 within the genome. In this paper we describe the isolation of two YAC clones that map to chromosome 14 and that contain multiple copies of a D4Z4-like repeat. Isolation of cDNA clones that map to the acrocentric chromosomes and Southern blot analysis of somatic cell hybrids show that there are similar loci on all of the acrocentric chromosomes. D4Z4 is a member of a complex repeat family, and PCR analysis of somatic cell hybrids shows an organization into distinct subfamilies. The implications of this work in relation to the molecular mechanism of FSHD pathogenesis is discussed. We propose the name 3.3-kb repeat for this family of repetitive sequence elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号