首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lectin-like oxidized low-density lipoprotein scavenger receptor (LOX-1) is a pro-inflammatory marker and Type II membrane protein expressed on vascular cells and tissues. The LOX-1 extracellular domain mediates recognition of oxidized low-density lipoprotein (oxLDL) particles that are implicated in the development of atherosclerotic plaques. To study the molecular basis for LOX-1-mediated ligand recognition, we have expressed, purified and refolded a recombinant LOX-1 protein and assayed for its biological activity using a novel fluorescence-based assay to monitor binding to lipid particles. Overexpression of a hexahistidine-tagged cysteine-rich LOX-1 extracellular domain in bacteria leads to the formation of aggregates that accumulated in bacterial inclusion bodies. The hexahistidine-tagged LOX-1 molecule was purified by affinity chromatography from solubilized inclusion bodies. A sequential dialysis procedure was used to refold the purified but inactive and denatured LOX-1 protein into a functionally active form that mediated recognition of oxLDL particles. This approach allowed slow LOX-1 refolding and assembly of correct intrachain disulfide bonds. Circular dichroism analysis of the refolded LOX-1 molecule demonstrated a folded state with substantial alpha-helical content. Using immobilized recombinant, refolded LOX-1 we demonstrated a 70-fold preferential recognition for oxLDL over native LDL particles. Thus, a protein domain containing intrachain disulfide bonds can be reconstituted into a functionally active state using a relatively simple dialysis-based technique.  相似文献   

2.
Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) plays a major role in oxidized low-density lipoprotein-induced vascular inflammation. Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis, although its specific mechanism remains unknown. This study was conducted to investigate the mechanisms of LOX-1 expression in GroEL1 (a heat shock protein from C. pneumoniae)-administered human coronary artery endothelial cells (HCAECs) and atherogenesis in hypercholesterolemic rabbits. We demonstrated that in the hypercholesterolemic rabbit model, GroEL1 administration enhanced fatty streak and macrophage infiltration in atherosclerotic lesions, which may be mediated by elevated LOX-1 expression. In in vitro study using HCAECs, stimulation with GroEL1 increased TLR4 and LOX-1 expression. Increased LOX-1 expression was downregulated by Akt activation and PI3K-mediated endothelial NO synthase activation. PI3K inhibitor and NO synthase inhibitor induced LOX-1 mRNA production, whereas the NO donor ameliorated the increasing effect of LOX-1 mRNA in GroEL1-stimulated HCAECs. LOX-1 expression was regulated by NADPH oxidase, which mediates reactive oxygen species production and intracellular MAPK signaling pathway in GroEL1-stimulated HCAECs. Treatment with polyethylene-glycol-conjugated superoxide dismutase, apocynin, or diphenylene iodonium significantly decreased GroEL1-induced LOX-1 expression, as did the knockdown of Rac1 gene expression by RNA interference. In conclusion, the GroEL1 protein may induce LOX-1 expression in endothelial cells and atherogenesis in hypercholesterolemic rabbits. The elevated level of LOX-1 in vitro may be mediated by the PI3K-Akt signaling pathway, endothelial NO synthase activation, NADPH oxidase-mediated reactive oxygen species production, and MAPK activation in GroEL1-stimulated HCAECs. The GroEL1 protein of C. pneumoniae may contribute to vascular inflammation and cardiovascular disorders.  相似文献   

3.
Celastrol is a triterpenoid compound extracted from the Chinese herb Tripterygium wilfordii Hook F. Previous research has revealed its anti-oxidant, anti-inflammatory, anti-cancer and immunosuppressive properties. Here, we investigated whether celastrol inhibits oxidized low-density lipoprotein (oxLDL) induced oxidative stress in RAW 264.7 cells. In addition, the effect of celastrol on atherosclerosis in vivo was assessed in apolipoprotein E knockout (apoE−/−) mouse fed a high-fat/high-cholesterol diet (HFC). We found that celastrol significantly attenuated oxLDL-induced excessive expression of lectin-like oxidized low density lipoprotein receptor-1(LOX-1) and generation of reactive oxygen species (ROS) in cultured RAW264.7 macrophages. Celastrol also decreased IκB phosphorylation and degradation and reduced production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and proinflammatory cytokines such as tumor necrosis factor (TNF)-α and IL-6. Celastrol reduced atherosclerotic plaque size in apoE−/− mice. The expression of LOX-1 within the atherosclerotic lesions and generation of superoxide in mouse aorta were also significantly reduced by celastrol while the lipid profile was not improved. In conclusion, our results show that celastrol inhibits atherosclerotic plaque developing in apoE−/− mice via inhibiting LOX-1 and oxidative stress.  相似文献   

4.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.  相似文献   

5.
6.
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have identified products of lipid peroxidation of OxLDL that serve as ligands for LOX-1. We used CHO (Chinese-hamster ovary) cells that stably express LOX-1 to evaluate the ability of BSA modified by lipid peroxidation to compete with AcLDL (acetylated low-density lipoprotein). We found that HNE (4-hydroxy-2-nonenal)-modified proteins most potently inhibited the uptake of AcLDL. On the basis of the findings that HNE-modified BSA and oxidation of LDL resulted in the formation of HNE-histidine Michael adducts, we examined whether the HNE-histidine adducts could serve as ligands for LOX-1. The authentic HNE-histidine adduct inhibited the uptake of AcLDL in a dose-dependent manner. Furthermore, we found the interaction of LOX-1 with the HNE-histidine adduct to have a dissociation constant of 1.22×10(-8) M using a surface plasmon resonance assay. Finally, we showed that the HNE-histidine adduct stimulated the formation of reactive oxygen species and activated extracellular-signal-regulated kinase 1/2 and NF-κB (nuclear factor κB) in HAECs (human aortic endothelial cells); these signals initiate endothelial dysfunction and lead to atherosclerosis. The present study provides intriguing insights into the molecular details of LOX-1 recognition of OxLDL.  相似文献   

7.
Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE−/− mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.  相似文献   

8.
Fluid shear stress and uptake of oxidized low-density lipoprotein (ox-LDL) into the vessel wall both contribute to atherosclerosis, but the relationship between shear stress and ox-LDL uptake is unclear. We examined the effects of flow, induced by orbital rotation of bEnd.3 brain endothelial cell cultures for 1 wk, on ox-LDL receptor (LOX-1) protein expression, ox-LDL uptake and ox-LDL toxicity. Orbitally rotated cultures showed no changes in LOX-1 protein expression, ox-LDL uptake or ox-LDL toxicity, compared to stationary cultures. Flow alone does not modify ox-LDL/LOX-1 signaling in bEnd.3 brain endothelial cells in vitro, suggesting that susceptibility of atheroprone vascular sites to lipid accumulation is not due solely to effects of altered flow on endothelium.  相似文献   

9.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1–10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism.  相似文献   

10.
Oxidized low-density lipoprotein particles is a pro-atherogenic factor implicated in atherosclerotic plaque formation. The LOX-1 scavenger receptor binds OxLDL and is linked to atherosclerotic plaque initiation and progression. We tested the hypothesis that the LOX-1 cytoplasmic domain contains a transplantable signal for membrane protein endocytosis. Structural modeling of the LOX-1 cytoplasmic domain reveals that a tripeptide motif (DDL) implicated in LOX-1 endocytosis is part of a curved β-pleated sheet structure. The two aspartic acid residues within this structural model are highly solvent-accessible enabling recognition by cytosolic factor(s). A triple alanine substitution of the DDL motif within the LOX-1 scavenger receptor substantially reduced endocytosis of OxLDL. Transplantation of the LOX-1 cytoplasmic domain into a transferrin receptor reporter molecule conferred efficient endocytosis on this hybrid protein. Mutation of the DDL motif within the hybrid LOX-1-TfR protein also substantially reduced receptor-mediated endocytosis. Thus a transplantable endocytic motif within the LOX-1 cytoplasmic domain is needed to ensure efficient internalization of pro-atherogenic OxLDL particles.  相似文献   

11.
12.
LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury   总被引:2,自引:0,他引:2  
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was originally identified as a receptor for oxidized low-density lipoprotein predominantly expressed in endothelial cells. LOX-1 expression can be induced in cardiomyocytes and that activation of LOX-1 is involved in apoptosis. To investigate possible roles of LOX-1 in myocardial ischemia-reperfusion injury, rats were subjected to coronary artery ligation for 1h followed by reperfusion for 2h. Immunohistochemistry revealed that expression of LOX-1 in cardiac myocytes was induced following ischemia-reperfusion but not ischemia alone. Administration of anti-LOX-1 monoclonal antibody resulted in a nearly 50% reduction in myocardial infarction size compared with that of normal IgG or saline (P<0.05). These findings suggest that activation of the LOX-1 pathway is involved in determining the extent of myocardial ischemia-reperfusion injury and that inhibition of the LOX-1 pathway may provide a novel strategy for treatment of acute myocardial infarction in humans.  相似文献   

13.
The development of atherosclerosis is caused by the accumulation of lipid, inflammatory cytokine production, and the large amount of inflammatory cells in the arterial wall. It is now established that the presence of oxidized low-density lipoproteins (ox-LDL) has an important role in the pathogenesis of the disease. There are many scavenger receptors for ox-LDL, among which LOX-1 seems to be important for the induction of endothelial dysfunction and the other subsequent events that lead to the formation of atheromatous plaque. Our findings indicate the presence of a regulatory role induced by the presence of ox-LDL on LOX-1 through the amplification of IL-6 synthesis. This mechanism contributes to the upregulation of the ORL-1 gene expression in presence of risk factors. Many authors have shown the possibility to use LOX-1 as a good marker for the diagnosis and prognosis of coronary artery disease because it is easy to measure and more sensitive than other markers commonly used in the routine of laboratory medicine.  相似文献   

14.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the scavenger receptors that recognizes oxidized low-density lipoprotein as a major ligand. The placenta is a major source of prooxidant during pregnancy, and the level of placental oxidative stress increases rapidly at the end of the first trimester and tapers off later in gestation. In our study, we evaluated placental expression of LOX-1 during different gestational stages in mice and humans. We used immunohistochemistry and ISH to identify LOX-1-expressing cells in murine and human placentas. In both species, higher expression of LOX-1 mRNA during early to midgestational stages compared with late gestation-corresponding to the increased oxidative stress in early pregnancy-was shown by real-time RT-PCR. In murine placenta, we showed that LOX-1-expressing cells were fibroblast-like stromal cells in metrial glands and decidua basalis and that they were glycogen trophoblast cells in the junctional and labyrinth zones. In the human, LOX-1 expression was detected in villous cytotrophoblasts in both first trimester and term placentas. These localization patterns of LOX-1 in murine and human placentas suggest the possible involvement of LOX-1 in high oxidative stress conditions of pregnancy.  相似文献   

15.
Activation-dependent surface expression of LOX-1 in human platelets   总被引:13,自引:0,他引:13  
Lectin-like oxidized LDL receptor-1 (LOX-1) was initially identified as an oxidized LDL receptor in aortic endothelial cells. Here we identified LOX-1 mRNA and protein in human platelets in addition to recent findings on the expression in macrophages and smooth muscle cells. The presence of LOX-1 was further confirmed in the megakaryocytic cell lines. Flow cytometric analyses revealed that LOX-1 was exposed on the surface of platelets in an activation-dependent manner. Consistently, the activation-dependent binding of OxLDL to platelets was mostly inhibited by anti-LOX-1 antibody. Immunohistochemistry of the atherosclerotic plaque from a patient with unstable angina pectoris (UAP) revealed accumulation of LOX-1 protein at the site of thrombus. As LOX-1 recognizes and binds activated platelets, exposure of LOX-1 on activated platelets surface might assist thrombosis formation.  相似文献   

16.
Elevated levels of lipid peroxidation and increased formation of reactive oxygen species within the vascular wall in atherosclerosis can overwhelm cellular antioxidant defence mechanisms. Accumulating evidence implicates oxidatively modified low density lipoproteins (LDL) in vascular dysfunction in atherosclerosis and oxidized LDL have been localized with in atherosclerotic lesions. We here report that human oxidatively modified LDL induce expression of 'antioxidant-like' stress proteins in vascular cells, involving increases in the activity of L-cystine transport, glutathione synthesis, heme oxygenase-1 and the murine stress protein MSP23. Moreover, treatment of human arterial smooth muscle cells with the dietary antioxidant vitamin C markedly attenuates adaptive increases in endogenous antioxidant gene expression and affords protection against smooth muscle cell apoptosis induced by moderately oxidized LDL. As vascular cell death is a key feature of atherosclerotic lesions and may contribute to the plaque 'necrotic' core, cap rupture and thrombosis, our findings suggest that the cytoprotective actions of vitamin C could limit plaque instability in advanced atherosclerosis.  相似文献   

17.
Oxidized low-density lipoprotein (ox-LDL) leads to atherosclerosis via lectin-like oxidized lipoprotein receptor-1 (LOX-1), one of the major receptor for ox-LDL. Inhibition of the binding of ox-LDL to LOX-1 decreases the proinflammatory and atherosclerotic events. The aim of the present study was to investigate whether protamine, a polybasic nuclear protein, interferes the binding of ox-LDL to LOX-1. Using sandwich ELISA with newly generated antibody, we measured the blocking effect of protamine on the binding of ox-LDL to LOX-1. Protamine dose-dependently inhibited the binding of ox-LDL to LOX-1. DiI-labeled ox-LDL uptake assay in two types of cultured human endothelial cells was performed with fluorescence microplate reader. Activation of extracellular-signal-regulated kinase (ERK)1/2 by ox-LDL was analyzed by immunoblotting. We found that protamine suppressed uptake of ox-LDL in endothelial cells and inhibited ERK1/2 activation by ox-LDL. These results suggest that protamine may possess anti-atherogenic potential by inhibiting ox-LDL binding to LOX-1 through electrostatic interactions.  相似文献   

18.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) is a scavenger receptor that binds oxidized low-density lipoprotein (OxLDL) and has a role in atherosclerosis development. The N-terminus intracellular region (cytoplasmic domain) of LOX-1 mediates receptor internalization and trafficking, potentially through intracellular protein interactions. Using affinity isolation, we identified 6 of the 8 components of the chaperonin-containing TCP-1 (CCT) complex bound to LOX-1 cytoplasmic domain, which we verified by coimmunoprecipitation and immunostaining in human umbilical vein endothelial cells. We found that the interaction between CCT and LOX-1 is direct and ATP-dependent and that OxLDL suppressed this interaction. Understanding the association between LOX-1 and the CCT complex may facilitate the design of novel therapies for cardiovascular disease.  相似文献   

19.
Elevated levels of lipid peroxidation and increased formation of reactive oxygen species within the vascular wall in atherosclerosis can overwhelm cellular antioxidant defence mechanisms. Accumulating evidence implicates oxidatively modified low density lipoproteins (LDL) in vascular dysfunction in atherosclerosis and oxidized LDL have been localized with in atherosclerotic lesions. We here report that human oxidatively modified LDL induce expression of ‘antioxidant-like’ stress proteins in vascular cells, involving increases in the activity of l-cystine transport, glutathione synthesis, heme oxygenase-1 and the murine stress protein MSP23. Moreover, treatment of human arterial smooth muscle cells with the dietary antioxidant vitamin C markedly attenuates adaptive increases in endogenous antioxidant gene expression and affords protection against smooth muscle cell apoptosis induced by moderately oxidized LDL. As vascular cell death is a key feature of atherosclerotic lesions and may contribute to the plaque ‘necrotic’ core, cap rupture and thrombosis, our findings suggest that the cytoprotective actions of vitamin C could limit plaque instability in advanced atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号