首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fungal immunomodulatory proteins (FIPs) are a new protein family identified from several edible and medical mushrooms and play an important role in anti-tumor, anti-allergy and immunomodulating activities. A gene encoding the FIP was cloned from the mycelia of Changbai Lingzhi (Ganoderma lucidum) and recombinant expressed in the Pichia pastoris expression system. SDS-PAGE, amino acid composition and circular dichroism analyses of the recombinant FIP (reFIP) indicated that the gene was correctly and successfully expressed. In vitro assays of biological activities revealed that the reFIP exhibited similar immunomodulating capacities as native FIPs. The reFIP significantly stimulated the proliferation of mouse spleen lymphocytes and apparently enhanced the expression level of interleukin-2 released from the mouse splenocytes. In addition, anti-tumor activity assay showed that the reFIP could inhibit the proliferation of human leukemia-NB4 by inducing the cell apoptosis to a degree of about 32.4%. Taken together, the FIP gene from Changbai G. lucidum has been integrated into the yeast genome and expressed effectively at a high level (about 191.2 mg l−1). The reFIP possessed very similar biological activities to native FIPs, suggesting its potential application as a food supplement or immunomodulating agent in pharmaceuticals and even medical studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.  相似文献   

3.
To utilize Pichia pastoris to produce glutathione, an intracellular expression vector harboring two genes (gsh1 and gsh2) from Saccharomyces cerevisiae encoding enzymes involved in glutathione synthesis and regulated by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was transformed into P. pastoris GS115. Through Zeocin resistance and expression screening, a transformant that had higher glutathione yield (217 mg/L) in flask culture than the host strain was obtained. In fed-batch culture process, this recombinant strain displayed high activity for converting precursor amino acids into glutathione. The glutathione yield and biomass achieved 4.15 g/L and 98.15 g (dry cell weight, DCW)/L, respectively, after 50 h fermentation combined with addition of three amino acids (15 mmol/L glutamic acid, 15 mmol/L cysteine, and 15 mmol/L glycine).  相似文献   

4.
Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (~1 g/l) of extracellular glycosylated rSAK (~18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (~15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.  相似文献   

5.
Proteolytic degradation is the primary obstacle in the use of the yeast Pichia pastoris for the expression of recombinant proteins. During the production of a recombinant Plasmodium falciparum circumsporozoite protein in this system, the (NANP) n repeats region at the N-terminus were completely proteolytically degraded. To remove the potential proteolytic site within the recombinant protein, different strategies were tried, including adjusting the cultivation conditions and mutating the sequence at the junction of the repeat domain and C-terminal region, but the degradation continued. However, modification of the N-terminal sequence by adding an epitope-based peptide to the N-terminus not only protected the repeat domain from cleavage by native proteases during longer induction in the yeast host and purification process, but also stabilized this recombinant protein emulsified with adjuvant ISA720 for at least 6 months. The results showed that proteolytic degradation of the recombinant circumsporozoite protein produced in P. pastoris was amino acid sequence (NANP)-specific, and that this effect was likely dependent on the conformation of the recombinant protein.  相似文献   

6.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

7.
Pichia pastoris is an efficient host for the expression and secretion of heterologous proteins and the most important feature of P. pastoris is the existence of a strong and tightly regulated promoter from the alcohol oxidase I (AOX1) gene. The AOX1 promoter (pAOX1) has been used to express foreign genes and to produce a variety of recombinant proteins in P. pastoris. However, some efforts have been made to develop new alternative promoters to pAOX1 to avoid the use of methanol. The glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) has been used for constitutive expression of many heterologous proteins. The pGAP-based expression system is more suitable for large-scale production because the hazard and cost associated with the storage and delivery of large volume of methanol are eliminated. Some important developments and features of this expression system will be summarized in this review. Supported by the National High-tech R&D Program (863 program) (No.2007AA021307).  相似文献   

8.
The coding sequence of a laccase isozyme from Trametes sp. AH28-2 was cloned in pPIC9K vector and heterologously overexpressed in the yeast Pichia pastoris strain GS115. In the minimal medium containing 0.3 mM CuSO4 and 0.6% alanine, the maximum yield of the recombinant laccase rLacB reached 32,000 U/l (1,012 U/mg), slightly higher than that of the native enzyme nLacB (∼30,000 U/l, 1,356 U/mg). The enzymatic properties of rLacB were different from those of nLacB as well. Regardless of the inferior thermal stability, rLacB had much better stability at both neutral and basic pH range compared to nLacB. In addition, the dye decolorization potential of rLacB was similar to that of nLacB.  相似文献   

9.
The xylanase gene xyn II from Aspergillus usamii E001 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K and integrated into the genome of a methylotrophic yeast, P. pastoris GS115, by electroporation. His+ transformants were screened for on the basis of their resistance to G418 and activity assay. A transformant, P. pastoris GSC12, which showed resistance to over 6 mg G418/ml and highest xylanase activity was selected. Recombinant xylanase was secreted by P. pastoris GSC12 24 h after methanol induction of shake-flask cultures, and reached a final yield of 3139. About 68 U/mg 120 h after the induction. The molecular mass of this xylanase was estimated to be 21 kDa by SDS-PAGE. The optimum pH and temperature were 4.2 and 50 °C, respectively. Xylanase was stable below 50 °C and within pH 3.0–7.0. Its activity was increased by EDTA and Co2+ ion and strongly inhibited by Mn2+, Li+ and Ag+ ions. The K m and V max values with birchwood xylan as the substrate were found to be 5.56 mg/ml and 216 μmol/mg/min, respectively. This is the first report on expression and characterization of xylanase from A. usamii in P. pastoris. The hydrolysis products consisted of xylooligosaccharides together with a small amount of xylose. This property made the enzyme attractive for industrial purposes, as relatively pure xylooligosaccharides could be obtained.  相似文献   

10.
Luo H  Huang H  Yang P  Wang Y  Yuan T  Wu N  Yao B  Fan Y 《Current microbiology》2007,55(3):185-192
A novel phytase gene appA, with upstream and downstream sequences from Citrobacter amalonaticus CGMCC 1696, was cloned by degenerate polymerase chain reaction (PCR), and thermal asymmetric interlaced (TAIL) PCR and was overexpressed in Pichia pastoris. Sequence analysis revealed one open reading frame that consisted of 1311 bp encoding a 436–amino-acid protein, which had a deduced molecular mass of 46.3 kDa. The phytase appA belongs to the histidine acid phosphatase family and exhibits the highest identity (70.1%) with C. braakii phytase. The gene was overexpressed in P. pastoris. The secretion yield of recombinant appA protein was accumulated to approximately 4.2 mg·mL−1, and the enzyme activity level reached 15,000 U·mL−1, which is higher than any previous reports. r-appA was glycosylated, as shown by Endo H treatment. r-appA was purified and characterized. The specific activity of r-appA for sodium phytate was 3548 U·mg−1. The optimum pH and temperature for enzyme activity were 4.5 and 55°C, respectively. r-appA was highly resistant to pepsin or trypsin treatment. This enzyme could be an economic and efficient alternative to the phytases currently used in the feed industry.  相似文献   

11.
Zhou Y  Zheng Q  Gao J  Gu J 《Biotechnology letters》2005,27(3):167-171
Angiogensis can be blocked by inhibitors such as endostatin and angiostatin. The kringle 5 fragment of plasminogen also has a potent inhibitory effect on endothelial cell proliferation and leads to the inhibition of angiogenesis. It has promise in anti-angiogenic therapy due to its small size and potent inhibitory effect. Preparation of kringle 5 has been achieved through the proteolysis of native plasminogen and recombinant DNA technology. Bacterially expressed recombinant kringle 5 is mainly insoluble and expressed at low level. The refolding yield is also low. To produce recombinant human kringle 5 in a large quantity, we have genetically modified a strain of Pichia pastoris. On methanol induction, this strain expressed and secreted biologically active, recombinant kringle 5. The expression level of the engineered strain in culture reached more than 300mgl-1. Purification was easily achieved by precipitation, hydrophobic and DEAE ion exchange chromatography. The recovery of recombinant kringle 5 was about 50% after purification. Yeast-expressed kringle 5 has a higher activity in anti-endothelial proliferation than bacterially expressed kringle 5.Revisions requested 9 November 2004; Revisions received 2 December 2004  相似文献   

12.
Recently it was shown that Pyrococcus furiosus uses its flagella not only for swimming, but also for establishment of cell-cell connections, and for adhesion to abiotic surfaces. Therefore, it was asked here if P. furiosus might be able to adhere also to biotic surfaces. Since Methanopyrus kandleri can be found in habitats similar to those of P. furiosus (seawater close to the boiling point and anaerobic conditions) it was tested if interactions between both archaea occur. Using a standard medium and a gas phase reduced in H(2) (compared with the optimal gas phase for M. kandleri) we were able to grow both species in a stable coculture. Very interestingly, M. kandleri could adhere to glass under such conditions, but not P. furiosus. This latter archaeum, however, was able to adhere onto M. kandleri cells and onto itself, resulting in structured biofilms on glass. These very often appeared as a bottom layer of M. kandleri cells covered by a multitude of P. furiosus cells. Interactions between P. furiosus and M. kandleri were mediated not only by flagella, but also by direct cell-cell contact.  相似文献   

13.
The high-cell-density fermentation of Candida rugosa lipase in the constitutive Pichia pastoris expression system was scaled up from 5 to 800 l in series by optimizing the fermentation conditions at both lab scale and pilot scale. The exponential feeding combined with pH-stat strategy succeeded in small scale studies, while a two-stage fermentation strategy, which shifted at 48 h by fine tuning the culture temperature and pH, was assessed effective in pilot-scale fermentation. The two-stage strategy made an excellent balance between the expression of heterogeneous protein and the growth of host cells, controlling the fermentation at a relatively low cell growth rate for the constitutive yeast expression system to accumulate high-level product. A stable lipase activity of approximately 14,000 IU ml−1 and a cell wet weight of ca. 500 g l−1 at the 800-l scale were obtained. The efficient and convenient techniques suggested in this study might facilitate further scale-up for industrial lipase production.  相似文献   

14.
Lectin-like oxidatively-modified LDL receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (oxLDL) in aortic endothelial cells. Human LOX-1 (hLOX-1) gene (cDNA) was cloned from the monocytic leukemic cell line THP-1 and expressed in Pichia pastoris. The recombinant protein (rhLOX-1) was purified by his-tag affinity chromatography. Preliminary identification was performed by Western blot analysis and a ligand-receptor binding assay showed that the protein had specific oxLDL-binding activity.Revisions requested 21 September 2004; Revisions received 10 November 2004  相似文献   

15.
A high-density cell culture method to produce human angiostatin has been successfully established by constitutive expression of the protein in Pichia pastoris. The fermentation was carried out in a 20 l bioreactor with a 10 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol−0.8% PTM4 to the growing culture for 60 h at 30°C. Dissolved oxygen level was maintained at 25–30% and pH was controlled at 5 by the addition of 7 M NH4OH. Angiostatin was constitutively expressed during the fermentation by linking its expression to the P. pastoris constitutive GAP promoter (pGAP). But after 36 h of fermentation, the peak biomass growth was 305 as measured by absorption of 600 nm, while the peak angiostatin expression was 176 mg/l. Similar to the product expressed from inducible system [24], angiostatin produced from constitutive system also inhibited the angiogenesis on the CAM and suppressed the growth of B16 melanoma in C57BL/6J mouse. The above results suggest that GAP promoter is more efficient than AOX1 promoter for the expression of angiostatin in P. pastoris by shake flask culture or high-density cell fermentation and is likely to be an alternative to AOX1 promoter in large-scale expression of angiostatin and other heterologous proteins. Supported by the Natural Science Foundation of China (39670013) and “225” Science and Technology Program of Guangzhou Municipal Government of China (99-Z-004-001).  相似文献   

16.
A polyhydroxyalkanote depolymerase gene from Thermobifida sp. isolate BCC23166 was cloned and expressed as a C-terminal His6-tagged fusion in Pichia pastoris. Primary structure analysis revealed that the enzyme PhaZ-Th is a member of a proposed new subgroup of SCL-PHA depolymerase containing a proline–serine repeat linker. PhaZ-Th was expressed as two glycosylated forms with apparent molecular weights of 61 and 70 kDa, respectively. The enzyme showed esterase activity toward p-nitrophenyl alkanotes with V max and K m of 3.63 ± 0.16 μmol min−1 mg−1 and 0.79 ± 0.12 mM, respectively, on p-nitrophenyl butyrate with optimal activity at 50–55°C and pH 7–8. Surface plasmon resonance (SPR) analysis demonstrated that PhaZ-Th catalyzed the degradation of poly-[(R)-3-hydroxybutyrate] (PHB) films, which was accelerated in (R)-3-hydroxyvalerate copolymers with a maximum degradation rate of 882 ng cm−2 h−1 for poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (12 mol% V). Surface deterioration, especially on the amorphous regions of PHB films was observed after exposure to PhaZ-Th by atomic force microscopy. The use of P. pastoris as an alternative recombinant system for bioplastic degrading enzymes in secreted form and a sensitive SPR analytical technique will be of utility for further study of bioplastic degradation.  相似文献   

17.
Ren R  Jiang Z  Liu M  Tao X  Ma Y  Wei D 《Molecular biotechnology》2007,35(2):103-108
Two Pichia pastoris cell surface display vectors were constructed. The vectors consisted of the flocculation functional domain of Flo 1p with its own secretion signal sequence or the α-factor secretion signal sequence, a polyhistidine (6×His) tag for detection, an enterokinase recognition site, and the insertion sites for target proteins. Adenoregulin (ADR) is a 33-amino-acid antimicrobial peptide isolated from Phyllomedusa bicolor skin. The ADR was expressed and displayed on the Pichia pastoris KM71 cell surface with the system reported. The displayed recombinant ADR fusion protein was detected by fluorescence microscopy and confocal laser scanning microscopy (CLSM). The antimicrobial activity of the recombinant adenoregulin was detected after proteolytic cleavage of the fusion protein on cell surface. The validity of the Pichia pastoris cell surface display vectors was proved by the displayed ADR.  相似文献   

18.
In Pichia pastoris, secretion of the A33 single-chain antibody fragment (A33scFv) was shown to reach levels of approximately 4 g l−1 in fermentor cultures. In this study, we investigated whether manipulating chaperone and foldase levels in P. pastoris could further increase secretion of A33scFv. Cells were engineered to cooverexpress immunoglobulin binding protein (BiP) and/or protein disulfide isomerase (PDI) with A33scFv during growth in methanol as the sole carbon and energy source. Cooverexpression of BiP resulted in increased secretion levels of A33scFv by approximately threefold. In contrast, cooverexpression of PDI had no apparent effect on secretion of A33scFv. In cells cooverexpressing BiP and PDI, A33scFv secretion did not increase and protein levels remained the same as the control strain. We believe that secretion of A33scFv is increased by cooverexpression of BiP as a result of an increase in folding capacity inside the endoplasmic reticulum (ER). In addition, lack of increased single-chain secretion when PDI is coexpressed was unexpected due to the presence of disulfide bonds in A33scFv. We also show that during PDI cooverexpression with the single-chain there is a sixfold increase in BiP levels, indicating that the former is possibly inducing an unfolded protein response due to excess chaperone and recombinant protein in the ER.  相似文献   

19.
The administration of antibodies against the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a promising approach in the upregulation of immune responses in many cancers and infectious diseases. The single-chain variable fragment of antibody against CTLA4 is also useful in developing immunotoxins that might be used in the treatment of cancer, transplant rejection, and autoimmune diseases. Here, we report the production of a soluble and functional scFv antibody against CTLA4 by using Pichia pastoris as the expression system. The gene encoding scFv hS83 with an additional 6His-tag at the 5’-end was inserted into the expression vector pPIC9K. Then, the transformants were double-screened on plates containing 0.25 mg/mL and 1.5 mg/mL of neomycin G418 and many clones with different levels of G418-resistance were selected for further studies on expression. After induction by the addition of methanol, various levels of hS83 were detected in the supernatant of P. pastoris containing pPIC9K-hS83. Clones with low G418-resistance produced more hS83 than those with higher G418-resistance. Under the optimized conditions (initial inoculum, 40 A600nm AU/mL; pH 6.0; methanol concentration, 3.0%; induction time, 72 h), approximately 16–20 mg protein could be recovered from 1 L of the culture. The purified hS83 had a stronger binding ability towards CTLA4-positive Raji cells than CTLA4-negative ECV304 cells. This finding indicates that the antibody produced by P. pastoris is functional and may be used in immunotherapy for cancer, infection, transplant rejection, and autoimmune diseases. Huawei Cai and Lihong Chen contributed equally to this work.  相似文献   

20.
The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号