首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNA对多细胞动物复杂性进化的影响   总被引:1,自引:0,他引:1  
戴中华  陈良标 《遗传》2010,32(2):105-114
MicroRNA(miRNA)是一种长度约为22个碱基的非编码单链小分子RNA。作为一类重要的转录后基因表达调控因子,miRNA参与了广泛的生物学过程,如发育时程调控、细胞分化、凋亡、肿瘤以及病毒抵抗等。然而,除了在个体发生过程中的重要功能外,越来越多的研究表明,miRNA在系统发生中也扮演着关键的角色。基因表达模式的不同被广泛地认为是物种内和物种间表型差异的根源,动物物种间miRNA的保守性和多样性研究提示miRNA对物种间表型差异以及动物进化起着重要的作用。文章介绍了miRNA产生过程和作用机制,重点探讨了miRNA在动物进化过程中的作用,从miRNA的进化速度、miRNA表达的时空特异性、miRNA作用靶位点变异以及miRNA基因的扩增与丢失4个方面论述miRNA介导的基因调控网络对多细胞动物发育复杂性进化的影响,推测miRNA在多细胞动物进化过程中驱动了复杂性的增加。  相似文献   

2.
3.
4.
动物细胞核内miRNA的加工过程   总被引:5,自引:0,他引:5  
microRNA(miRNA)是存在于真核生物中的一类大的基因家族,与其靶mRNA分子一起形成了生物体内复杂的调控网络。miRNA在基因表达调节过程中的关键性作用涉及到发育时序的控制、造血细胞的分化、细胞凋亡、细胞增殖以及器官的形成等方面。其中最值得探讨的问题是miRNA的生物发生过程及其调控机制。近年来,miRNA在动物细胞核中加工机制的研究取得了较大的进展。在细胞核中,RNA多聚酶II指导的miRNA基因的转录,微处理器作用下的pri-miRNA的剪切及exportin-5协助下的pre-miRNA的输出过程彼此协调,共同而有序的完成miRNA在细胞核中的加工过程。  相似文献   

5.
MicroRNAs play critical roles in various biological and metabolic processes. The function of miRNAs has been widely studied in model plants such as Arabidopsis and rice. However, the number of identified miRNAs and related miRNA targets in peach (Prunus persica) is limited. To understand further the relationship between miRNAs and their target genes during tissue development in peach, a small RNA library and three degradome libraries were constructed from three tissues for deep sequencing. We identified 117 conserved miRNAs and 186 novel miRNA candidates in peach by deep sequencing and 19 conserved miRNAs and 13 novel miRNAs were further evaluated for their expression by RT-qPCR. The number of gene targets that were identified for 26 conserved miRNA families and 38 novel miRNA candidates, were 172 and 87, respectively. Some of the identified miRNA targets were abundantly represented as conserved miRNA targets in plant. However, some of them were first identified and showed important roles in peach development. Our study provides information concerning the regulatory network of miRNAs in peach and advances our understanding of miRNA functions during tissue development.  相似文献   

6.
7.
8.
9.
One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.  相似文献   

10.
11.
The propensity of animal miRNAs to regulate targets bearing modest complementarity, most notably via pairing with miRNA positions ∼2–8 (the “seed”), is believed to drive major aspects of miRNA evolution. First, minimal targeting requirements have allowed most conserved miRNAs to acquire large target cohorts, thus imposing strong selection on miRNAs to maintain their seed sequences. Second, the modest pairing needed for repression suggests that evolutionarily nascent miRNAs may generally induce net detrimental, rather than beneficial, regulatory effects. Hence, levels and activities of newly emerged miRNAs are expected to be limited to preserve the status quo of gene expression. In this study, we unexpectedly show that Drosophila testes specifically express a substantial miRNA population that contravenes these tenets. We find that multiple genomic clusters of testis-restricted miRNAs harbor recently evolved miRNAs, whose experimentally verified orthologs exhibit divergent sequences, even within seed regions. Moreover, this class of miRNAs exhibits higher expression and greater phenotypic capacities in transgenic misexpression assays than do non-testis-restricted miRNAs of similar evolutionary age. These observations suggest that these testis-restricted miRNAs may be evolving adaptively, and several methods of evolutionary analysis provide strong support for this notion. Consistent with this, proof-of-principle tests show that orthologous miRNAs with divergent seeds can distinguish target sensors in a species-cognate manner. Finally, we observe that testis-restricted miRNA clusters exhibit extraordinary dynamics of miRNA gene flux in other Drosophila species. Altogether, our findings reveal a surprising tissue-directed influence of miRNA evolution, involving a distinct mode of miRNA function connected to adaptive gene regulation in the testis.  相似文献   

12.
13.
14.
MicroRNAs (miRNAs) constitute an abundant family of 22-nucleotide RNAs that base-pair to target mRNAs and typically inhibit their expression. To assess the global impact of animal miRNAs on gene regulation, the expression of predicted targets and their cognate miRNAs was extensively analyzed in mammals and Drosophila. In general, targets are co-expressed at relatively low or undetectable levels in the same tissues as the miRNAs predicted to regulate them. Additionally, genes that are highly co-expressed with miRNAs usually lack target sites. The authors conclude that many animal genes are under evolutionary pressure to maintain or avoid complementary sites to miRNAs. Thus, the miRNA pathway broadly contributes to the complex gene regulatory networks that shape animal tissue development and identity.  相似文献   

15.
MicroRNAs (miRNAs) are small regulatory RNAs that control gene expression by base-pairing with their mRNA targets. miRNAs assemble into ribonucleoprotein complexes termed miRNPs. Animal miRNAs recognize their mRNA targets via partial antisense complementarity and repress mRNA translation at a step after translation initiation. How animal miRNAs recognize their mRNA targets and how they control their translation is unknown. Here we describe that in a human neuronal cell line, the miRNP proteins eIF2C2 (a member of the Argonaute family of proteins), Gemin3, and Gemin4 along with miRNAs cosediment with polyribosomes. Furthermore, we describe a physical association between a let-7b (miRNA)-containing miRNP and its putative human mRNA target in polyribosome-containing fractions. These findings suggest that miRNP proteins may play important roles in target mRNA recognition and translational repression.  相似文献   

16.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

17.
小RNA(MicroRNA)研究方法   总被引:7,自引:0,他引:7  
小RNA (microRNA)是一类新发现的长度约为21~25个核苷酸的RNA,它在转录后水平调节靶基因表达.已有研究表明,小RNA在发育、细胞增殖、凋亡、脂类代谢、激素分泌及肿瘤发生等多种生理和病理过程中发挥重要作用.针对小RNA的研究方法主要包括两大类:一是以传统实验技术方法为基础建立起来的小RNA特有的技术方法,二是已成熟应用的生物信息学技术.前者侧重于小RNA表达的检测和功能机制的阐明,后者则包括新小RNA基因及小RNA靶基因的预测.两者相辅相成,互为补充,为深入地研究这类分子的功能和分子机制提供了大量功能线索,及确凿的实验证据.  相似文献   

18.
19.
MicroRNA biogenesis and function in plants   总被引:33,自引:0,他引:33  
Chen X 《FEBS letters》2005,579(26):5923-5931
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号