首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG)E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd ≅ 1 × 10−8M. No high affinity — low capacity 3H-PGF sites could be demonstrated.Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-PGE2>16 phenoxy-17,18,19,20-tetranor-PGF=PGE2=PGE1=(15S)-15-methyl-PGF>PGF.  相似文献   

2.
The specific binding of 3H-prostaglandin E1 (3H-PGE1) to bovine corpus luteum cell membranes was not affected by cholesterol or various progestins at concentrations of up to 9.0 × 10−6M. At concentrations above 2.5 × 10−6M; estrone, 17β-estradiol (but not 17α-estradiol or 17β-estradiol glucuronide), estriol, equilin, D-equilenin, 17-ethynyl estradiol, diethylstilbestrol, cortisol, corticosterone, deoxycorticosterone and aldosterone inhibited specific binding of 3H-PGE1. On the other hand, testosterone and dihydrotestosterone (DHT) (but not androstenedione) significantly enhanced 3H-PGE1 binding. These findings permitted the following correlations between steroid structure and modulation of 3H-PGE1 binding: steroids with a free phenolic ring and a 17β-hydroxyl or 17-keto group or C-21 steroids with a C-20 ketone and a C-21 hydroxy group decrease, whereas C-19 steroids with a C-17 hydroxy group enhance specific binding of 3H-PGE1. PGE receptors are heterogeneous with respect to affinity for 3H-PGE1. The steroids that decreased 3H-PGE1 binding caused a lowering to a complete loss of low affinity PGE receptors. Steroids that increased 3H-PGE1 binding caused appearance of new low affinity PGE receptors. Association rate constants for 3H-PGE1 binding were decreased by 17β-estradiol (61%) and increased by DHT (59%).  相似文献   

3.
The cell membranes exhibited specific binding to 3H-prostaglandin E1 (3H-PGE1) and 125I-human chorionic gonadotropin (125I-HCG). Unlabeled PGE1,PGE2 (1.4 × 10?7M), PGF and PGF (1.4 × 10?5M) decreased 3H-PGE1 binding by more than 80%. The binding of 125I-HCG was completely inhibited by 5 × 10?8M unlabeled HCG. However, the unlabeled PGE1 (1.15 × 10?6M) and HCG (8.4 × 10?7M) had no effect on 125I-HCG and 3H-PGE1 binding respectively. A PG antagonist, 7-oxa-13-prostynoic acid, inhibited only 3H-PGE1 binding but not 125I-HCG binding. These results suggest the presence of specific receptors for PGE1 and HCG in the cell membranes and that the binding occurs either at two different sites on the same receptor or that each binds to a “different” receptor molecule.  相似文献   

4.
The cell membranes isolated from bovine corpora lutea bound 3H-prostaglandin (PG) F2α with high affinity and specificity. The specific binding of 3H-PGF2α was detectable at 10?10M added 3H-PGF2α and reached saturation at 10?7M to 10?6M. Unlabeled PGF2α, as low as 10?9M, inhibited the binding of 3H-PGF2α with complete inhibition occurring at 10?6M. The Scatchard analysis of equilibrium binding data revealed that the PGF2α receptors are heterogeneous: Kd1?5.1 × 10?9M, n?289 fmoles/mg protein; Kd2?1.8 × 10?8M, n?780 fmoles/mg protein. The relative affinities of various other PGs for binding to PGF2α receptors were (PGF2α?100%): PGF1α?17.5; PGE1?0.8; PGE2?22.4; PGA1?0.007; PGB1?0.01. The specificity and affinity of 3H-PGF2α binding is consistent with the possibility that this receptor interaction may reflect an initial event in the action of PGF2α as a luteolytic agent.  相似文献   

5.
The effects of exogenous histamine (H) on prostaglandin (PG) generation and release in uteri isolated from diestrous rats and the influences of H2-receptors blockers (cimetidine and mitiamide) on the output of uterine PGs, were explored. Moreover, the action of H on the uterine 9-keto-reductase, was also studied. Histamine (10−4M) failed to alter the basal output of PGE1 but reduced significantly the generation and release of PGE2 and augmented the output of PGF. On the other hand, cimetidine (10−5M) enhanced the basal release of PGE2 but had no action on the outputs of PGs E1 or F. The enhancing effect of H on the production and release of PGF was abolished in the presence of cimetidine. Also, the antagonist reversed the influence of H on the output of PGE2. Metiamide, another H2-receptor antagonist, did not alter the basal control generation and release of uterine PGs, but antagonized the augmenting influence of H on PGF uterine output, as much as cimetidine did, and prevented the depressive action of H on the release of PGE2 from uteri. Histamine (10−4M) significantly stimulated uterine formation of cyclic-adenosine monophosphate, an action which was antagonized by the presence of cimetidine (10−5M), a blocker of H2 receptors. Also, histamine (10−5M) and dibutyril-cyclic-adenosine monophosphate (DB-cAMP) at 10−3M, enhanced significantly the formation 3H-PGF from 3H-PGE2. Results presented herein demonstrate that H is able to diminish the generation of PGE2 in uteri from rats at diestrus augmenting the synthesis of PGF, apparently via the activation of H2-receptors, enhancing adenylate-cyclase. These effects appear to increase uterine 9-keto-reductase activity which transforms PGE2 into PGF. Relationships between the foregoing results and those evoked by estradiol, are also discussed.  相似文献   

6.
We studied PGE2 specific binding sites in human myometrial microsomes prepared from uterine specimens obtained by hysterectomy (women between 38 and 55 years of age). Competition experiments showed that the potency order for various prostaglandins (PGs) was : PGE2 ≥ PGE1 PGF > Iloprost ≥ Carbacyclin ZK 110841 (PGD2 analogue). These relative affinities indicated that the receptor was of the EP type.In kinetic experiments GTP, GppNHp and GTPγS increased the rate of PGE2 binding (steady state was reached more rapidly in the presence of nucleotides) but maximal specific binding was not significantly different. Complete dissociation could not be obtained, even in the presence of GTP. Only 50% of maximal binding was readily dissociable. The dissociation rate was 4.56.10−4 sec−1 (half time of about 660 sec) and in the presence of GTP analogues it was slightly increased (k−1 = 7.16 10−4 sec−1 half time 420 sec.). Scatchard analysis of saturation curves showed an increase in ligand receptor affinity in the presence of GTP or nucleotide analogues: the Kd shifted from 9.66 ± 2.8.10−9 M to 4.96 ± 1.25.10−9M, but the number of binding sites did not change significantly (310 ± 37 to 350 ± 17 fmol/mgP). The effect of GTP was observed at a concentration of 5.10−4M. GppNHp and GTPγS were effective at 1.10−5M. Pretreatment of myometrial membranes with pertussis or cholera toxins had no effect on PGE2 binding to membrane sites. Our conclusion is that GTP induced conversion of a population of low affinity sites into a population of higher affinity sites. This effect of guanine nucleotides was described in adipocytes and kidney medulla.Competition studies with PGE2 analogues (sulprostone, 17-phenyl-ω-trinor PGE2, M&B 28,767, misoprostol, butaprost) showed that this receptor mediates a contractile response and is probably an EP3 subtype.  相似文献   

7.
A charcoal adsorption method was developed to measure specific prostaglandin binding in low speed supernates of hamster myometrial homogenates. This method was used to characterize and quantitate PGE1-specific binding. The equilibrium binding constants and the concentration of specific PGE1 binding sites were determined during the hamster estrous cycle. The apparent association constant for 12 different preparations was 1.16 ± 0.08 × 109M−1. The concentration of PGE1 specific binding sites was significantly higher on Days 2 and 3 of the estrous cycle than it was on Days 1 or 4. The competition for PGE1 binding sites by PGE2, PGF, PGA1 and various PGE1 metabolites and derivatives was measured in hamster myometrial homogenates. Relative affinities of the natural prostaglandins for the PGE1 binding sites, calculated by parallel line assay, were: PGE2>PGE1>PGA1>PGF. For PGE1 metabolites the relative affinities were: PGE1>13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1>15-keto-PGE1. For the analogs and derivatives the compounds tested ranked as: 16,16-dimethyl-PGE1≥PGE1>PGE1 methyl ester>17-phenyl-18,19,20-trinor-PGE1>15(S)15-methyl-PGE1 methyl ester. Arachidonic acid, bis-homo-γ-linolenic acid and 7-oxa-13 prostynoic acid had relative affinities ≥0.1 compared to PGE1=100. Indomethacin had a relative affinity of 0.4 compared to PGE1.  相似文献   

8.
Pretreatment of membranes for 1 hr at 4° with up to 0.1% Triton X-100 (TX-100) and sodium desoxycholate (SDC), resulted in a greater loss of [3H] prostaglandin (PG)F2α binding compared to E1 binding. Lubrol WX (LWX) tended to cause a greater loss of [3H]PGF2α than E1 binding. However, the differential loss was not as marked as with TX-100 or SDC. Triton X-305 was relatively ineffective, but loss of [3H]PGE1 binding was greater than for PGF2α. Increasing concentrations of dimethylsulfoxide (DMSO) progressively inhibited PGF2α binding without affecting PGE1 binding. The detergent, but not DMSO, induced losses of membrane PG binding were due to solubilization of the receptors. Greater amounts of membrane protein and phospholipids were solubilized at detergent (TX-100 and SDC) concentrations that solubilized 100% of PGE1 receptors compared to 100% solubilization of F2α receptors. Neither the duration of preincubation nor the amount of membrane protein chosen were responsible for differential PGE1 and F2α receptor losses. These differential membrane PG receptor losses raise the possibility of differences in PGE1 and F2α receptors association with the membrane structure.  相似文献   

9.
The results of the present study establish that 1.5 mg PGE2 (lyophilized sodium salt) incorporated in one cm long open-ended Silastic-polyvinylpyrrolidone (PVP) tube when inserted into 10 day pregnant rats induced abortion within 70–72 hours in all the treated rats. A combined treatment of PGE2 and 17β-estradiol failed to increase the abortion inducing effect of a Silastic-PVP-PGE2 tube. It is observed that PGE2 is about 4 times less potent than PGF in inducing midterm abortion in rats. It is suggested that either PGE2 exerts luteolytic effect after being converted to PGF, although how it occurs is not clear; or PGE2 causes expulsion of the fetuses by its uterine stimulating property. 17β- estradiol increases the uterine synthesis of PGF as described earlier but seems not affecting the production of PGE2 by the uterus. The release rate of 3H-PGE2 from Silastic-PVP tube and is also described.  相似文献   

10.
Both NaCl and NaF promoted PGE2 binding to epididymal adipocyte membranes by apparent increase in the binding affinity. In order to distinguish between the effect of fluoride and the ‘salt effect’ of sodium on PGE2 binding, the effects of Mg2+ and guanyl nucleotides on PGE2 binding in the presence of NaCl or NaF were compared. Mg2+ decreased PGE2 binding; high NaF concentration abolished this inhibition, while increased NaCl concentratipns did not affect the Mg2+ inhibition. In the presence of Mg2+ the effects of NaCl and NaF were additive. The enhancement of PGE2 binding by fluoride, unlike sodium, was dependent on the presence of Mg2+. Induction of the membranes with GDPβS, Gpp(NH)p, GTP or GTPγS increased PGE, binding. Gradual increase in NaF concentrations in the presence of guanyl nucleotides resulted in stimulation of PGE2 binding at low NaF concentrations and inhibition of PGE2 binding at higjh NaF concentrations. No changes in the stimulatory action of NaCl on PGE2 binding were observed in the simulatenous presence of NaCl and guanyl nucleotides. A biphasic effect on PGE2 binding was observed with a wide concentration range of guanyl nucleotides. Treatment of the isolated membranes with cholera or pertussis toxins stimulated the adenylyl cyclase activity of the membranes, but failed to influence PGE2 binding. The implications of these findings are discussed.  相似文献   

11.
Thw radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF in urine humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF was determined by a specific antibody to PGF. Basal excretion of PGE2 and of PGF in healthy women on free diet was 9.3 ng/hour ± 0.96 and 18.3 ng/hour ± 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGE increased markedly from 46.2 pg/min ± 9.3 and 27 ± 3.4 to 253.8 ± 43.3 and 108 ± 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

12.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p<.01) at 0.5, 2, and 6 hours after treatment with 100 μg PGF. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 μg PGF and 2 hours after treatment with 1 mg PGF. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF. The specific uptake of 3H-PGF in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 μg PGF treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 μg PGF resulted in no change. Administration of 1 mg PGF resulted in depressed 3H-PGF uptake at both 2 and 6 hours post-treatment.Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF specific uptake or serum progesterone 2 hours after 100 μg treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF resulted in a complete lack of measurable 3H-PGF uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

13.
Prostacyclin, (PGI2) is a potent but unstable inhibitor of platelet aggregation, probably acting through stimulation of adenylate cyclase.A stable analogue of prostacyclin with antiaggregatory properties, 5,6-dihydro-PGI2 (6β-PGI), and PGE1 can compete for the binding sites labelled by 3H-PGI2 in human platelet membranes (the affinity being PGI2 > PGE1 > 6β -PGI1). Both 6β-PGI1 and PGE1, as well as PGI2, bind to two classes of binding sites. 6β -PGI1 and PGE1 activate adenylate cyclase to the same extent as PGI2,with a rank order of potency which parallels that observed in binding experiments. The stimulation of this enzyme is brought about by interaction of each these prostanoids with two different classes of components. The comparison of binding and adenylate cyclase data suggests that the sites to which PGI2, 6β -PGI1 and PGE1 bind might be coupled to the activation of adenylate cyclase. Since 6β-PGI1 seems to act through the same molecular mechanisms as PGI2, because of its stability it is an useful tool to investigate the mode of action of prostacyclin in platelets.  相似文献   

14.
The specific binding of 3H-prostaglandin E1 (3H-PGE1) to bovine corpus luteum cell membranes was not affected by cholesterol or various progestins at concentrations of up to 9.0 × 10−6M. At concentrations above 2.5 × 10−6M; estrone, 17β-estradiol (but not 17α-estradiol or 17β-estradiol glucuronide), estriol, equilin, D-equilenin, 17-ethynyl estradiol, diethylstilbestrol, cortisol, corticosterone, deoxycorticosterone and aldosterone inhibited specific binding of 3H-PGE1. On the other hand, testosterone and dihydrotestosterone (DHT) (but not androstenedione) significantly enhanced 3H-PGE1 binding. These findings permitted the following correlations between steroid structure and modulation of 3H-PGE1 binding: steroids with a free phenolic ring and a 17β-hydroxyl or 17-keto group or C-21 steroids with a C-20 ketone and a C-21 hydroxy group decrease, whereas C-19 steroids with a C-17 hydroxy group enhance specific binding of 3H-PGE1. PGE receptors are heterogeneous with respect to affinity for 3H-PGE1. The steroids that decreased 3H-PGE1 binding caused a lowering to a complete loss of low affinity PGE receptors. Steroids that increased 3H-PGE1 binding caused appearance of new low affinity PGE receptors. Association rate constants for 3H-PGE1 binding were decreased by 17β-estradiol (61%) and increased by DHT (59%).  相似文献   

15.
Intrauterine insertion of a 0.5 cm long Silastic-PVP tube containing 750 μg PGE2 (lyophilized sodium salt) caused midterm abortion in hamsters within 48 hours. An earlier study using a similar Silastic-PVP tube delivery system showed that 200 μg of PGF (Tham) was sufficient to induce abortion in 100% of pregnant hamsters (18). Prostaglandin E2 is, therefore, about 3.5–4 times less potent than PGF as an abortifacient in the hamster. The release of 3H-PGE2 from Silastic-PVP tube and is also described. It is suggested that an increase in LH release might be one of the factors leading to luteolysis; and that either PGE2 exerts a direct luteolytic effect or this effect is manifested after its being converted to PGF.  相似文献   

16.
Metabolism of [3H] arachidonic acid ([3H] AA) and synthesis of prostaglandins were examined with ovine conceptuses and endometrial slices collected on various days after mating. Tissues were incubated for 24 hr with or without 5 μCi of [3H] AA and with 200 μg radioinert AA. In experiment 1, results of chromatography indicated that conceptuses collected on days 14 and 16 after mating metabolized [3H] AA to PGE2, PGF, PGFM, 6-keto-PGF, and to unidentified compounds in three chromatographic regions. One of these regions (region 1) contained triglycerides. Endometrial slices metabolized only small amounts of the [3H] AA to prostaglandins. In experiment 2, results of radioimmunoassays indicated that day 14 conceptuses released somewhat similar amounts (ng/mg tissue) of PGF (32.1 ± 17.9), PGFM (8.4 ± 6.2), PGE2 (12.3 ± 7.5) and 6-keto-PGF (41.4± 4.8), whereas day 16 conceptuses released more (P<.05) PGF2α (9.0 ± 4.1) and 6-keto-PGF (15.9 ± 2.7) than PGE2 (0.9 ± 0.2) or PGFM (0.5 ± 0.08). Day 14 and 16 endometrial slices released (ng/mg tissue) more (P<.05) PGFM (3.0 ± 0.2) and 6-keto-PGF (4.0 ± 0.4) than PGF (0.5 ± 0.08) or PGE2 (0.05 ± 0.02). In experiment 3, conceptuses were recovered on days 16, 20 and 24 of pregnancy and incubated with [3H] AA to determine the effects of indomethacin on [3H] AA metabolism. In general, indomethacin (Id; 4 × 10−4 M) reduced (P<.05) the percentage of total dpm recovered as prostaglandins, but Id increased the release of chromatographic region I. Experiment 4 was conducted with day 16, 20 and 24 conceptuses to evaluate the time course of metabolism of [3H] AA, and the appearance of region I and of prostaglandins. In general, the percentage of total dpm in region I increased as the percentage of dpm as [3H] AA decreased. The percentage of dpm as prostaglandins increased as the percentage of dpm in region I decreased. Prostaglandins, probably essential for embroynal survival and development, were synthesized in vitro by ovine conceptuses.  相似文献   

17.
The subcellular distribution of prostaglandin (PG) E1, F2α and gonadotropin receptors in bovine corpora lutea was critically examined by preparing various subcellular fractions, assaying for various marker enzymes to assess the purity and examining 3H-PGE1, 3H-PGF2α and 125I-human lutropin (hLH) specific binding. The marker enzyme data suggested that subcellular fractions were relatively pure with little or no cross contamination. The binding of 3H-PGs and 125I-hLH was markedly enriched in plasma membranes with respect to homogenate. The other subcellular fractions also exhibited binding despite very little or no detectable 5′-nucleotidase activity. If 5′-nucleotidase was assumed to lack sensitivity and reliability to detect minor contamination with plasma membranes and 3H-PGs or 125I-hLH binding were used as sensitive plasma membrane markers, it was still difficult to explain binding in other fractions based on plasma membrane contamination. Therefore, these results lead to the inevitable conclusion that plasma membranes were primary (or one of the primary) but not exclusive sites for PGE1, PGF2α and gonadotropin receptors.  相似文献   

18.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

19.
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF) were determined. PGE2 and 6 keto PGF were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196±40 to 370±84 ng/4 hrs/g creatinine and 6 keto PGF1α(184±30 to 326±36), both p<0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF release (370±84 vs. 381±80) PGE2 and (326±50 vs. 315±40) 6 keto PGF, both p>0.2). PHT alone stimulated only 6 keto PGF. PHB and the specific α1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with α1 characteristics.  相似文献   

20.
Epinephrine (EPI) is thought to act by stimulating adenylyl cyclase (ACase) and cAMP production through β-adrenoceptors in the liver of more primitive vertebrates. Recent observations, however, point to an involvement of α1-adrenoceptors in EPI action, at least in some fish species. The role of the α1- and β-adrenergic transduction pathways has been investigated in rainbow trout (Oncorhynchus mykiss) hepatic tissue. Radioligand-binding assays with the β-adrenergic antagonist 3H-CGP-12177 using hepatic membranes purified on a discontinuous sucrose gradient confirmed the presence of β-adrenoceptors (Kd0.36 nM, Bmax 8.61 fmol · mg−1 protein). We provide the first demonstration of α1-adrenoceptors in these same membranes; analysis of binding data with the α1-adrenergic antagonist 3H-prazosin demonstrated a single class of binding sites with a Kdof 15.4 nM and a Bmax of 75.2 fmol · mg−1 protein. There is a straight correlation between β-adrenoceptor occupancy, ACase activation and cAMP production. On the contrary, the role of inositol 1,4,5-trisphosphate (IP3) has to be elucidated; in fact, despite the presence of specific microsomal binding sites for IP3 (Kd 6.03 nM, Bmax 90.2 fmol · mg−1 protein), its cytosolic concentration was not modulated by EPI. On the other hand, we have previously shown in American eel and bullhead hepatocytes that α1-adrenergic agonists are able to increase intracellular concentrations of IP3 and Ca2+ and to activate glycogenolysis. These data suggest a marked variation in the liver of different fish both in terms of α1-binding sites affinity and of α1-adrenoceptor/IP3/Ca2+ transduction systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号