首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 953 毫秒
1.
双孔钾离子通道是一种背景钾离子通道,广泛分布于各种兴奋和非兴奋细胞中,并具有许多重要的生理功能。TASK-1是双孔钾离子通道家族的重要一员,它对缺氧和细胞外酸化敏感,参与形成心肌动作电位平台期,调节呼吸、肺动脉平滑肌收缩和醛固酮的分泌,并且是麻醉剂的作用靶点,人们不断对其进行研究并取得了很多重要结果,本文将概述双孔钾通道TASK-1的研究进展。  相似文献   

2.
Gao R  Hu HY  Zheng Y 《生理科学进展》2007,38(3):265-268
酸敏感的背景钾通道TASK-1[TWIK(tandem of P domains in a weak inwardly rectifying K channel)-related acid-sensitive K channels-1]是一类对细胞外生理状态pH敏感的开放-整流型漏钾离子通道。该通道在中枢神经系统和外周组织广泛表达,受多种物质调节。TASK-1通过改变神经元的电活动,来调节机体的多种生理功能。  相似文献   

3.
王晖  肖昭扬  高琴琴  刘明富 《生物磁学》2014,(12):2356-2359
钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70余种钾离子通道亚型,其中双孔钾离子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统的单孔钾离子通道差异很大。双孔钾离子通道,具有4个跨膜片段,形成独特的2个孔道结构域,主要介导背景钾电流。由于其介导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1几乎表达于机体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

4.
:钾离子通道是最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70 余种钾离子通道亚型,其中双孔钾离 子通道是近年来新发现的一类钾离子通道亚家族,它们在结构上与电压依赖性钾通道、钙激活钾通道,内向整流型钾通道等传统 的单孔钾离子通道差异很大。双孔钾离子通道,具有4 个跨膜片段,形成独特的2 个孔道结构域,主要介导背景钾电流。由于其介 导背景钾电流而参与并维持静息膜电位形成等重要生理作用而备受关注。近年来研究最多的双孔钾通道TREK-1 几乎表达于机 体的每一个细胞,可被细胞内酸度、膜牵张、多不饱和脂肪酸、温度、受体偶联第二信使系统调控,调节细胞兴奋性,参与一系列生 理、病理过程,与神经系统疾病如癫痫密切相关,本文就此做一综述。  相似文献   

5.
目的:探讨缺氧对人肺动脉平滑肌细胞内向整流酸敏感性双孔钾通道(TASK-1)的影响,及非受体酪氨酸激酶(c-Src)对该过程的调节作用。方法:培养人肺动脉平滑肌细胞(h PASMCs):分为正常组、缺氧30 min组、缺氧6 h组、缺氧48 h组及缺氧48 h+PP2组、缺氧48 h+PP3组和缺氧48 h+bp V组,应用流式细胞仪检测细胞周期,RT-PCR及Western blot方法测定不同组细胞TASK-1的mRNA及蛋白表达变化。结果:1细胞周期显示:与正常对照组相比,随缺氧时间延长,S期百分率增加;与缺氧48 h组相比,缺氧48 h+PP2组S期百分率下降;2急性缺氧6 h组TASK-1 mRNA表达增加,慢性缺氧组TASK-1 mRNA表达降低,急、慢性缺氧组TASK-1蛋白表达减少;c-Src抑制剂PP2可促进TASK-1 mRNA及蛋白表达,酪氨酸磷酯酶抑制剂bp V抑制TASK-1蛋白表达。结论:缺氧促进人肺动脉平滑肌细胞增殖,非受体酪氨酸激酶c-Src介导急、慢性缺氧对双孔钾通道TASK-1调控过程,可能与缺氧性人肺血管收缩存在一定的相关性。  相似文献   

6.
双孔钾通道是近年来发现的一种背景钾离子通道,广泛分布于各种组织细胞,参与维持细胞的静息膜电位。研究发现双孔钾通道可参与调节睡眠觉醒周期和痛觉传递,并与全身麻醉药产生的镇痛、镇静、抗焦虑作用有关。本文主要对双孔钾通道参与调节上述生理、病理过程的相关研究进展进行了综述。  相似文献   

7.
钾离子通道是数量最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70余种钾离子通道亚型,其中双孔钾离子通道是近年来新发现的一类钾离子通道亚家族,它们具有4个跨膜片段,形成独特的2个孔道结构域,主要介导背景钾电流。研究发现双孔钾通道TREK-1与人体神经系统、心血管系统、肺部、妇科等多系统疾病密切相关,且在不同组织器官功能不尽相同,本文就TREK-1与人体多系统疾病相关性及其作用机制做一综述。  相似文献   

8.
目的:探讨二十二碳六烯酸(DHA)对大鼠心房颤动(AF)模型心房肌生理特性的影响及相关机制研究。方法:80只乙酰胆碱-氯化钙混合液敏感的SD大鼠分为对照组(CTL组)、DHA处理组(DHA组)、房颤组(AF组)和房颤+DHA处理组(DHA+AF组),观察房颤持续时间;采用全细胞膜片钳技术记录大鼠心房肌细胞动作电位时程(APD)和双孔钾通道TASK-1电流,Western blot测定大鼠心房组织TASK-1蛋白表达。结果:大鼠尾静脉注射乙酰胆碱-氯化钙混合液后,房颤持续时间随实验天数增加而逐渐延长,DHA干预缩短房颤持续时间。与CTL组相比,AF组大鼠心房肌细胞复极50%时的动作电位时程(APD50)和复极90%时的动作电位时程(APD90)明显缩短,心房肌细胞TASK-1电流密度升高,蛋白表达升高(P<0.05)。与AF组相比,DHA+AF组大鼠心房肌细胞APD50和APD90明显延长,TASK-1电流密度和蛋白表达降低(P<0.05)。结论:DHA具有延长房颤大鼠心房肌细胞APD的作用,可能与其下调心房肌TASK-1蛋白的表达从而降低心房肌细胞TASK-1电流密度有关。  相似文献   

9.
目的:研究Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达及其在细胞增殖和细胞周期中的作用。方法:应用RT-PCR和免疫细胞化学鉴别Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达。应用MTT和流式细胞技术观察KV1.3钾离子通道对SKOV3卵巢癌细胞增殖及细胞周期的影响。结果:4-氨基吡啶是Kv1.3钾离子通道特异性阻滞剂。不同浓度的4-氨基吡啶可以明显抑制SKOV3细胞的增殖,并且细胞周期也受到影响。G0/G1细胞比例增加,S期和G2/M期细胞比例下降。结论:Kv1.3钾离子通道在SKOV3卵巢癌细胞中表达,并且在细胞增殖及细胞周期变换中扮演着重要的角色。  相似文献   

10.
瓮占平  王纯  陶红  宁辉  纪向虹 《生物磁学》2011,(11):2053-2057
目的:研究Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达及其在细胞增殖和细胞周期中的作用。方法:应用RT—PCR和免疫细胞化学鉴别Kv1.3钾离子通道在SKOV3卵巢癌细胞中的表达。应用MTT和流式细胞技术观察KV1.3钾离子通道对SKOV3卵巢癌细胞增殖及细胞周期的影响。结果:4-氨基吡啶是Kv1.3钾离子通道特异性阻滞剂。不同浓度的4-氨基吡啶可以明显抑制SKOV3细胞的增殖,并且细胞周期也受到影响。G0/G1细胞比例增加,S期和G2/M期细胞比例下降。结论:Kv1.3钾离子通道在SKOV3卵巢癌细胞中表达,并且在细胞增殖及细胞周期变换中扮演着重要的角色。  相似文献   

11.
The rate of aldosterone synthesis by adrenal glomerulosa cells relies on the selective permeability of the glomerulosa cell to K(+) ions. In rodent and bovine adrenal glomerulosa cells, this background potassium current is provided by a two-pore loop potassium (K2P) channel: largely TASK-3 in the rat and TREK-1 in the cow. The nature of the K2P channel in the human adrenal cortex is not known, and we have addressed this issue here using the H295R human adrenal cell line. We show that these cells express mRNA and protein for both TASK-3 and TREK-1 K2P channels. Using a potentiometric dye (FMP), we also show that TASK-3 and TREK-1 channel modulators can affect the membrane potential of H295R cells. Transfecting H295R cells with TASK-3 or TREK-1 dominant-negative mutants (TASK-3 G95E or TREK-1 G144E) produced depolarization of H295R cells and altered K-stimulated aldosterone secretion. Finally, transfection of a constitutively active mutant of Galpha(q) into H295R cells (GTPase-deficient Galpha(q)-QL) depolarized them and increased basal aldosterone secretion. Taken together, our data support both TASK-3 and TREK-1 as being functionally operational in the H295R cell line. This suggests that human adrenal glomerulosa cells may utilize both of these K2P channels for their background potassium current.  相似文献   

12.
Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.  相似文献   

13.
TASK-1 belongs to the 2P domain K+ channel family and is the prototype of background K+ channels that set the resting membrane potential and tune action potential duration. Its activity is highly regulated by hormones and neurotransmitters. Although numerous auxiliary proteins have been described to modify biophysical, pharmacological and expression properties of different voltage- and Ca2+-sensitive K+ channels, none of them is known to modulate 2P domain K+ channel activity. We show here that p11 interacts specifically with the TASK-1 K+ channel. p11 is a subunit of annexin II, a cytoplasmic protein thought to bind and organize specialized membrane cytoskeleton compartments. This association with p11 requires the integrity of the last three C-terminal amino acids, Ser-Ser-Val, in TASK-1. Using series of C-terminal TASK-1 deletion mutants and several TASK-1-GFP chimeras, we demonstrate that association with p11 is essential for trafficking of TASK-1 to the plasma membrane. p11 association with the TASK-1 channel masks an endoplasmic reticulum retention signal identified as Lys-Arg-Arg that precedes the Ser-Ser-Val sequence.  相似文献   

14.
Talley EM  Lei Q  Sirois JE  Bayliss DA 《Neuron》2000,25(2):399-410
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.  相似文献   

15.
In a preceding study we showed that the highly negative resting membrane potential of rat adrenal glomerulosa cells is related to background potassium channel(s), which belong to the two-pore domain channel family. TWIK-related acid-sensitive K+ channel (TASK-1) expression was found in glomerulosa tissue, and the currents elicited by injection of glomerulosa mRNA (I(glom)) or TASK-1 cRNA (I(TASK-1)) showed remarkable similarity in Xenopus laevis oocytes. However, based on the different sensitivity of these currents to acidification, we concluded that TASK-1 may be responsible for a maximum of 25% of the weakly pH-dependent glomerulosa background K+ current. Here we demonstrate that TASK-3, a close relative of TASK-1, is expressed abundantly in glomerulosa cells. Northern blot detected TASK-3 message in adrenal glomerulosa, but not in other tissues. Quantitative RT-PCR experiments indicated even higher mRNA expression of TASK-3 than TASK-1 in glomerulosa tissue. Similarly to the glomerulosa background current, the current expressed by injection of TASK-3 cRNA (I(TASK-3)) was less acid-sensitive than I(TASK-1). Ruthenium red in the micromolar range inhibited I(glom) and I(TASK-3), but not I(TASK-1). Like I(TASK-1), I(TASK-3) was inhibited by stimulation of AT1a angiotensin II receptor coexpressed with the potassium channel. The high level of expression and its pharmacological properties suggest that TASK-3 dominates the resting potassium conductance of glomerulosa cells.  相似文献   

16.
The two-pore K2P channel family comprises TASK, TREK, TWIK, TRESK, TALK, and THIK subfamilies, and TALK-1, TALK-2, and TASK-2 are functional members of the TALK subfamily. Here we report for the first time the single-channel properties of TALK-2 and its pHo sensitivity, and compare them to those of TALK-1 and TASK-2. In transfected COS-7 cells, the three TALK K2P channels could be identified easily by their differences in single-channel conductance and gating kinetics. The single-channel conductances of TALK-1, TALK-2, and TASK-2 in symmetrical 150 mM KCl were 21, 33, and 70 pS (-60 mV), respectively. TALK-2 was sensitive mainly to the alkaline range (pH 7-10), whereas TALK-1 and TASK-2 were sensitive to a wider pHo range (6-10). The effect of pH changes was mainly on the opening frequency. Thus, members of the TALK family expressed in native tissues may be identified based on their single-channel kinetics and pHo sensitivity.  相似文献   

17.
TASK-5, a new member of the tandem-pore K(+) channel family.   总被引:7,自引:0,他引:7  
TASKs are members of the recently identified K(+) channel family (KCNKx). Four TASKs (TASK1-4) identified so far form functional K(+) channels and encode background K(+) channels in various cell types. Recently, another member (TASK-5) was identified in the human genome. We cloned it and studied its tissue expression and functional properties. TASK-5 shares 51% amino acid identity with TASK-1 and TASK-3. Northern blot analysis showed that TASK-4 mRNA was expressed primarily in the adrenal gland and pancreas. Single nucleotide polymorphism (SNP) was found at amino acid position 95 that normally forms part of the K(+) channel selectivity filter. Neither form of TASK-5 showed channel activity when transfected in COS-7 cells. Exchange of C-termini of TASK-3 and TASK-5 failed to generate whole-cell currents. Thus, TASK-5 is a new member of the tandem-pore K(+) channel family but does not produce a functional plasma membrane K(+) current by itself.  相似文献   

18.
K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o)) sensor in the background of a pH(o)-insensitive TASK-3 channel, which leads to the restitution of pH(o)-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o) sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+) permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o) sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P) channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o). Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o)-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号