首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
目的:本文以设计的表面肌电(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

2.
李博  李强 《生物磁学》2011,(20):3942-3945
目的:本文利用表面肌电(sEMG)信号来研究多种手指组合动作的识别问题。方法:在对采集的四个通道sEMG信号进行降噪预处理的基础上,采用移动加窗处理方法来提取关于手指运动状态的信号活动段,再分析各个信号活动段的小波系数统计特征,进而利用多类支持向量机(SVM分类算法来实现手指组合动作的识别。结果:动作识别率最高达到100%。结论:所采用方法能够有效地识别多种手势动作,并为后续基于肌电信号的实时人机接口系统的研究奠定了理论基础。  相似文献   

3.
目的:本文利用表面肌电(sEMG)信号来研究多种手指组合动作的识别问题。方法:在对采集的四个通道sEMG信号进行降噪预处理的基础上,采用移动加窗处理方法来提取关于手指运动状态的信号活动段,再分析各个信号活动段的小波系数统计特征,进而利用多类支持向量机(SVM)分类算法来实现手指组合动作的识别。结果:动作识别率最高达到100%。结论:所采用方法能够有效地识别多种手势动作,并为后续基于肌电信号的实时人机接口系统的研究奠定了理论基础。  相似文献   

4.
付聪  练士龙  李强 《生物磁学》2011,(19):3774-3776
目的:本文针对表面肌电(sEMG)信号探讨动作电位传导速度(APCV)估计问题。方法:以生理学仿真sEMG信号为基础,采用基于互相关分析的时延估计技术来获取相应的APCV估计值,并利用重采样技术来提高估计的精度。结果:实验表明。针对重采样后的仿真信号,其APCV的估计误差得到了明显降低。结论:所采用方法能够有效获取满意的APCV估计效果。  相似文献   

5.
田杰  赵捷  李群  赵艳娜  徐舫舟  王越 《生物磁学》2009,(20):3938-3940
目的:检测采集到的信号是否为有效心电信号,提高后续心电诊断和分析的准确率。方法:将采集到的信号进行预处理,即去噪处理,主要抑制基线漂移,50Hz工频及其谐波干扰和肌电干扰;取滑动窗长度为4s,检测该段内信号是否有效。为了验证算法的准确率及对不同心电波形是否具有普遍适用性,对MIT-BIH Arrhythmia Database中48个记录,CU及MIT-BIH Noise Stress Test Database中部分记录进行了仿真、验证。结果:仿真实验证明该方法能正确区分有效和无效信号,错检率较低,实现简单,适合实时处理。结论:本方法准确率高,能减少后续心电诊断和分析的计算量并提高准确率,特别是对室颤检测,符合心电分析的要求。  相似文献   

6.
目的:本文针对表面肌电(sEMG)信号探讨动作电位传导速度(APCV)估计问题。方法:以生理学仿真sEMG信号为基础,采用基于互相关分析的时延估计技术来获取相应的APCV估计值,并利用重采样技术来提高估计的精度。结果:实验表明,针对重采样后的仿真信号,其APCV的估计误差得到了明显降低。结论:所采用方法能够有效获取满意的APCV估计效果。  相似文献   

7.
基于小波变换的心电信号去噪算法   总被引:1,自引:0,他引:1  
目的:去除在心电信号采集过程中混入的肌电干扰、工频干扰、基线漂移等噪声信号,避免噪声对心电信号特征点的识别和提取造成误判和漏判。方法:首先利用coif4小波对心电信号按Mallat算法进行分解,然后采用软、硬阈值折衷与小波重构的算法进行去噪。结果:采用MIT/BIH Arrhythmia Database中的心电信号进行仿真、验证,有效去除了三种常见的噪声信号。结论:本方法实时性好,为临床分析与诊断奠定了基础。  相似文献   

8.
为评价操作者完成施力操作后上肢肌肉疲劳状态,提出了一种基于上肢肱二头肌的sEMG信号-疲劳程度主观感受的肌肉施力疲劳评价方法.为此,设置不同的拉/伸操作力,选取13名青年男性志愿者参加测试,记录其上肢肱二头肌操作至疲劳状态下的表面肌电信号sEMG;对于上肢肱二头肌局部疲劳的主观感受的评分,则采用通用的Borg量表来分级,由受试者完成操作后进行问卷而获得.然后,运用1/3倍频程分析方法对sEMG进行频域处理后,完成了sEMG-Borg分值的曲线拟合,得出上肢肌肉疲劳评价模型.根据数据分析结果,建立的二次曲线评价模型最为理想,它将为监测实际操作任务时人的疲劳状态并进行操作任务设计与分析提供依据与手段.  相似文献   

9.
赵艳娜  魏珑  徐舫舟  赵捷  田杰  王越 《生物磁学》2009,(16):3128-3130
目的:研究去除心电信号中的基线漂移、工频干扰和肌电干扰等噪声,提高心电信号的自动识别和诊断精度。方法:利用Coif4小波对心电信号进行8尺度分解,采用小波分解重构法去除基线漂移,然后利用改进的小波闽值算法去除工频干扰和肌电干扰。结果:利用Matlab仿真工具,选择MIT-BIH心率失常数据库中信号进行验证,能有效去除这三种噪声,并且很好的保持R波的信息。结论:本算法在不丢失心电信号有用信息的前提下,可以较好的去除三种常见的噪声,可以用于心电信号自动分析之前的预处理。  相似文献   

10.
心电信号的采集及R波同步检测   总被引:1,自引:0,他引:1  
心电信号的R波识别在室速和房颤的同步除颤中具有十分重要的意义。传统的软件识别往往不能达到实时效果,而硬件识别则可以有效解决这一难题。本研究主要包括应用硬件电路构成的心电信号的采集系统和R波同步检测。硬件部分设计采用胸部双电极单导联输入心电信号,放大后再经微分电路和全波整流电路的处理,最后通过可选择的电压窗口比较器输出最终的R波信号检测结果。  相似文献   

11.
This tutorial is aimed primarily to non-engineers, using or planning to use surface electromyography (sEMG) as an assessment tool for muscle evaluation in the prevention, monitoring, assessment and rehabilitation fields. The main purpose is to explain basic concepts related to: (a) signal detection (electrodes, electrode–skin interface, noise, ECG and power line interference), (b) basic signal properties, such as amplitude and bandwidth, (c) parameters of the front-end amplifier (input impedance, noise, CMRR, bandwidth, etc.), (d) techniques for interference and artifact reduction, (e) signal filtering, (f) sampling and (g) A/D conversion, These concepts are addressed and discussed, with examples.The second purpose is to outline best practices and provide general guidelines for proper signal detection, conditioning and A/D conversion, aimed to clinical operators and biomedical engineers. Issues related to the sEMG origin and to electrode size, interelectrode distance and location, have been discussed in a previous tutorial. Issues related to signal processing for information extraction will be discussed in a subsequent tutorial.  相似文献   

12.
The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources.  相似文献   

13.
A thin, flexible multielectrode grid for high-density surface EMG.   总被引:2,自引:0,他引:2  
Although the value of high-density surface electromyography (sEMG) has already been proven in fundamental research and for specific diagnostic questions, there is as yet no broad clinical application. This is partly due to limitations of construction principles and application techniques of conventional electrode array systems. We developed a thin, highly flexible, two-dimensional multielectrode sEMG grid, which is manufactured by using flexprint techniques. The material used as electrode carrier (Polyimid, 50 microm thick) allows grids to be cut out in any required shape or size. One universal grid version can therefore be used for many applications, thereby reducing costs. The reusable electrode grid is attached to the skin by using specially prepared double-sided adhesive tape, which allows the selective application of conductive cream only directly below the detection surfaces. To explore the practical possibilities, this technique was applied in single motor unit analysis of the facial musculature. The high mechanical flexibility allowed the electrode grid to follow the skin surface even in areas with very uneven contours, resulting in good electrical connections in the whole recording area. The silverchloride surfaces of the electrodes and their low electrode-to-skin impedances guaranteed high baseline stability and a low signal noise level. The electrode-to-skin attachment proved to withstand saliva and great tensile forces due to mimic contractions. The inexpensive, universally adaptable and minimally obstructive sensor allows the principal advantages of high-density sEMG to be extended to all skeletal muscles accessible from the skin surface and may lay the foundation for more broad clinical application of this noninvasive, two-dimensional sEMG technique.  相似文献   

14.
The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180 Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs.  相似文献   

15.
There is a large and growing body of surface electromyography (sEMG) research using laboratory-specific signal processing procedures (i.e., digital filter type and amplitude normalisation protocols) and data analyses methods (i.e., co-contraction algorithms) to acquire practically meaningful information from these data. As a result, the ability to compare sEMG results between studies is, and continues to be challenging. The aim of this study was to determine if digital filter type, amplitude normalisation method, and co-contraction algorithm could influence the practical or clinical interpretation of processed sEMG data. Sixteen elite female athletes were recruited. During data collection, sEMG data was recorded from nine lower limb muscles while completing a series of calibration and clinical movement assessment trials (running and sidestepping). Three analyses were conducted: (1) signal processing with two different digital filter types (Butterworth or critically damped), (2) three amplitude normalisation methods, and (3) three co-contraction ratio algorithms. Results showed the choice of digital filter did not influence the clinical interpretation of sEMG; however, choice of amplitude normalisation method and co-contraction algorithm did influence the clinical interpretation of the running and sidestepping task. Care is recommended when choosing amplitude normalisation method and co-contraction algorithms if researchers/clinicians are interested in comparing sEMG data between studies.  相似文献   

16.
It is generally assumed that raw surface EMG (sEMG) should be high pass filtered with cutoffs of 10-30 Hz to remove motion artifact before subsequent processing to estimate muscle force. The purpose of the current study was to explore the benefits of filtering out much of the raw sEMG signal when attempting to estimate accurate muscle forces. Twenty-five subjects were studied as they performed rapid static, anisotonic contractions of the biceps brachii. Biceps force was estimated (as a percentage of maximum) based on forces recorded at the wrist. An iterative approach was used to process the sEMG from the biceps brachii, using progressively greater high pass cutoff frequencies (20-440 Hz in steps of 30 Hz) with first and sixth order filters, as well as signal whitening, to determine the effects on the accuracy of EMG-based biceps force estimates. The results indicate that removing up to 99% of the raw sEMG signal power resulted in significant and substantial improvements in biceps force estimates. These findings challenge previous assumptions that the raw sEMG signal power between about 20 and 500 Hz should used when estimating muscle force. For the purposes of force prediction, it appears that a much smaller, high band of sEMG frequencies may be associated with force and the remainder of the spectrum has little relevance for force estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号