首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
活体动物体内光学成像技术的研究进展   总被引:7,自引:2,他引:7  
张怡  韩彧  赵春林 《生命科学》2006,18(1):25-30
生物发光和荧光成像作为近年来新兴的活体动物体内光学成像技术,以其操作简便及直观性成为研究小动物活体成像的一种理想方法,在生命科学研究中得以不断发展。利用这种成像技术,可以直接实时观察标记的基因及细胞在活体动物体内的活动及反应。利用光学标记的转基因动物模型可以研究疾病的发生发展过程,进行药物研究及筛选等。本文综述了现有活体动物体内光学成像技术的原理、应用领域及发展前景,比较了生物发光与几种荧光技术的不同特点和应用。  相似文献   

2.
活体动物体内光学成像技术的研究进展及其应用   总被引:2,自引:0,他引:2  
王怡  詹林盛 《生物技术通讯》2007,18(6):1033-1035
活体动物体内光学成像是利用基因改构进行内源性成像试剂或外源性成像试剂标记细胞、蛋白或DNA,从而非侵入性地报告小动物体内的特定生物学事件的技术。活体成像可以直观灵敏地监测基因的表达模式、标记和示踪细胞、探讨蛋白间的相互作用,因而这一技术被广泛地用于分析基因的表达模式、评价基因治疗效果、评估肿瘤的发生和转移、监测移植器官等。简要综述了现有活体动物体内光学成像技术的基本原理、技术进展和相关应用。  相似文献   

3.
乳腺癌具有高转移率。使用小动物活体成像技术对乳腺癌的生长及转移情况实时监测定量分析可以帮助了解疾病机制及进行药物研究。二维成像对光学信号的定位与定量是相对的。随着计算机技术的进步,可以实现对采集的图像进行三维重建,精准量化光学信号,获得空间分布的三维信息。IVIS Spectrum小动物活体光学三维成像系统同时具有高灵敏的生物发光、荧光、切伦科夫辐射二维成像及三维扫描重建功能,是小动物活体光学成像的顶级系统。本文对人乳腺癌细胞(MDA-MB-231)进行慢病毒感染,在体外稳定表达荧光素酶后,选取重度联合免疫缺陷(SCID)小鼠进行原位乳腺癌模型的建立,通过IVIS Spectrum小动物活体光学三维成像系统对小鼠进行生物发光二维成像,无创观测肿瘤的生长及转移情况。本文的创新点是利用生物发光成像断层扫描技术对小鼠模型进行定量三维成像,使用系统自带的算法直接进行三维重建,同时结合鲸鱼优化算法(WOA)优化后的三维卷积的深度编码器-解码器的网络模型进行重建。通过CT图像验证两者的重建效果,得到肿瘤的深度信息,实现对乳腺癌的精准定量分析。  相似文献   

4.
鼠伤寒沙门菌的体内实验有利于开展食物中毒、胃肠炎、伤寒热等肠道传染病的防治。由于在活体内检测鼠伤寒沙门菌的动态变化存在瓶颈,使细菌致病机制的研究、疫苗及药物研发滞后。近年来应用小动物成像技术在活体中追踪转化了荧光素酶基因的鼠伤寒沙门菌越来越受到人们关注,综述该技术的应用现状及缺憾之处。  相似文献   

5.
目的利用荧光素酶基因标记的人肝癌细胞株BEL-7402建立裸鼠肝原位移植模型,及小鼠肝原位移植模型的生物发光和小动物PET-CT成像的比较。方法构建表达荧光素酶基因的真核表达载体并将其转入人肝癌细胞BEL-7402,经梯度浓度G418筛选获得稳定表达荧光素酶基因的细胞克隆并扩大培养。BALB/cA-nu裸鼠肝门静脉接种5×105个发光细胞使其成瘤,活体荧光成像和小动物PET-CT成像系统观察肿瘤的生长情况。结果获得了稳定表达Luc的人肝癌细胞株,将其接种到裸鼠体内,活体荧光成像系统观察发现能够成瘤,小动物PET-CT影像观察发现小鼠肝脏边缘对18 F-FDG有高摄取区域。结论利用荧光素酶基因标记的人肝癌细胞BEL-7402成功建立了原位肝癌裸鼠模型,小动物活体成像结合小动物PET-CT技术为原位肿瘤模型的建立提供了一种新的可靠的技术,为进一步研究肝癌生长转移机制和药物开发提供了新的有用工具。  相似文献   

6.
扩散磁共振成像(dMRI)是一种非侵入性的、能提供生物体内水分子扩散运动相关信息的成像技术,可用于检测神经纤维微观结构的变化.dMRI的出现为大脑结构与功能研究提供了全新的检测手段.过去的20年中,dMRI在实验方法和临床应用上均取得了重大进展.然而dMRI应用在基于动物模型的临床前脑成像研究中却并不常见.本文针对dMRI在临床前脑成像研究中的应用,建立了系列针对小动物高分辨dMRI数据的分析方法:a.构建了大鼠高分辨dMRI图像模板;b.实现了适用于小动物研究的基于体素的统计分析(VBA)方法与基于纤维束的空间统计分析(TBSS)方法;c.实现了小动物脑白质纤维束的确定性与概率性跟踪.这些方法的实现不仅能为小动物脑dMRI研究提供统一的图像模板与完善的计算方法,还将大大促进dMRI技术在小动物脑成像研究中的应用.  相似文献   

7.
目的建立基于临床肿瘤标本的胰腺癌原位移植模型,开展模型的评价研究。方法将临床新鲜的胰腺癌手术标本移植到裸鼠胰腺部位,建立原位异种移植模型(PDOX),通过活体成像技术和PET/CT对肿瘤生长状况进行评价;采用STR技术分析移植瘤的来源,通过组织形态观察和免疫组化判定移植瘤的病理学特征,同时检测PDOX模型外周血中CA19-9的表达水平。结果模型建立6周后,通过活体成像观察到近红外荧光信号明显富集在肿瘤部位,通过荧光强度可以初步判断肿瘤位置和大小;使用小动物PET/CT可清晰观察到腹部18F-FDG分子探针富集区域,与预期的肿瘤位置和大小一致;安死术后,解剖分离的各个脏器组织及肿瘤组织,通过近红外荧光成像进一步确认肿瘤生长状况;STR检测证实移植瘤人源性比率为99.99%;组织形态学和免疫组化分析表明移植肿瘤生长于裸鼠胰腺;血清中CA19-9检测进一步证实了胰腺癌的发生。结论成功建立了人胰腺癌原位异种移植模型,通过小动物活体成像、PET/CT等技术对模型进行了全面评估,为胰腺癌的发病机制和治疗研究提供了良好的动物模型。  相似文献   

8.
小动物体内可见光三维成像技术研究进展   总被引:4,自引:0,他引:4  
活体动物体内可见光成像是采用生物发光和荧光为标记物,利用灵敏的仪器来监控活体动物体内的细胞活动、蛋白表达情况和基因行为。近年来,可见光成像在生物医学的各个方面得到了广泛的应用。随着成像技术和检测仪器的不断发展,现已从平面二维成像逐渐发展为立体三维成像。三维成像技术在靶点的空间定位、与器官的关系,及绝对定量方面都有了很大的进展。本文就三维成像技术的原理、应用和发展前景进行了简要的综述。  相似文献   

9.
光学分子成像技术是在活体复杂的组织区域环境内细胞形态、运动与功能研究的最佳手段之一,极大地推进了免疫学的发展.肝脏是机体新陈代谢和解毒的重要器官,也被视为一个免疫器官.解析肝脏免疫基本特性和功能,对防治肝脏疾病以及全身性相关疾病具有重要意义.活体可视化研究肝脏区域生理或者病理状态下免疫应答,提供关键事件的多细胞参与及其彼此交互的时空动态信息,能极大地丰富对肝脏独特免疫反应的认知.本文将重点阐述目前活体肝脏成像的技术与方法以及光学显微成像技术,例如多光子激发显微成像与转盘共聚焦成像在肝脏免疫中的应用,并展望活体肝脏成像今后的发展方向和面临的机遇与挑战.  相似文献   

10.
无损光声成像技术结合了纯光学成像高选择特性和纯超声成像中深穿透特性的优点,克服了光散射限制,实现了对活体深层组织的高分辨、高对比度成像。该成像技术对内源物质例如脱氧血红蛋白、含氧血红蛋白、黑色素、脂质等进行成像,提供了活体生物组织结构和功能信息,已经在生物医学领域表现出巨大的应用前景。然而,很多与病理过程相关的特征分子的光吸收能力较弱,在活体环境中难以被光声成像系统所识别,从而限制了光声成像技术的应用范围。基于功能纳米探针的光声成像-光声分子成像极大拓展光声成像的应用范围,可以在活体层面对病理过程进行分子水平的定性和定量研究,将为实现目标疾病的早期诊断提供强大的技术支持。本文发展在近红外具有窄吸收线宽(半高宽仅为60 nm)的纳米金锥作为新型的光声探针。通过选择不同径长比的纳米金锥,可以任意调节纳米金锥的吸收峰。通过调谐激光器的波长,可实现对不同吸收峰纳米金锥的选择性激发。纳米金锥将有可能用于多光谱光声成像,实现对不同靶标的目标分子探测。  相似文献   

11.
In vivo bioluminescence imaging is becoming a very important tool for the study of a variety of cellular and molecular events or disease processes in living systems. In vivo bioluminescence imaging is based on the detection of light emitted from within an animal. The light is generated as a product of the luciferase-luciferin reaction taking place in a cell. In this study, we implanted mice with tumour cells expressing either a high or a low level of luciferase. In vivo bioluminescence imaging was used to follow tumour progression. Repeated luciferin injection and imaging of high and low luciferase-expressing tumours was performed. While low luciferase-expressing tumours grew similarly to vector controls, growth of the high luciferase-expressing tumours was severely inhibited. The observation that a high level of luciferase expression will inhibit tumour cell growth when an animal is subjected to serial in vivo bioluminescence imaging is potentially an important factor in designing these types of studies.  相似文献   

12.
The loss of paramagnetism of nitroxide radicals due to reductant reactions in biological systems, places a fundamental time constraint on their application as an imaging probe in in vivo EPR imaging studies. However, in vitro studies of the newly synthesized tetraethyl-substituted piperidine nitroxide radical demonstrated high resistivity to paramagnetic reduction when exposed to ascorbic acid, a common reduction agent in biological systems. In this work we investigated the use of these nitroxides as an imaging probe in EPR imaging of small rodents. 2,2,6,6-Tetraethyl-piperidine nitroxide (TEEPONE) is not highly soluble in aqueous media, thus a lipid-based emulsion system of lecithin was used to solubilize TEEPONE. The obtained solution was homogenous and with low viscosity, allowing smooth intravenous injection into mice tail vein. Acquired three dimensional (3D) EPR images of mouse head clearly showed TEEPONE distributed in all tissues including brain tissues, with an average measurable signal half-life of more than 80 min, thus demonstrating high resistivity to reduction due to ascorbic acid in in vivo animal studies, and the potential for use of this compound in in vivo studies of animal model systems.  相似文献   

13.
EXPERIMENTAL OBJECTIVES: In vivo imaging of GLP-1 receptor-positive tissues may allow examination of physiologic and pathophysiologic processes. Based on the GLP-1 analog Exendin 4, we have developed a radiolabeled compound specifically targeting the GLP-1 receptor (DTPA-Lys40-Exendin 4). This work aims to detect GLP-1 receptor-positive tissues by biodistribution studies and in vivo small animal imaging studies. For in vivo imaging, a high-resolution multi-pinhole SPECT (single photon emission computed tomography) system was used in conjunction with an MRI (magnetic resonance imaging) system for image fusion. RESULTS: DTPA-Lys40-Exendin 4 can be labeled with 111In to high specific activity (40 GBq/micromol). The radiochemical purity reliably exceeded 95%. Using this compound for in vivo small animal imaging of rats and mice as well as for biodistribution studies, specific GLP-1 binding sites could be detected in stomach, pancreas, lung, adrenals, and pituitary. Receptor-positive tissues were visualized with a high-resolution SPECT system with a resolution of less than 1 mm. CONCLUSIONS: The new technique using DTPA-Lys40-Exendin 4 allows highly sensitive imaging of GLP-1 receptor-positive tissues in vivo. Therefore, intra-individual follow-up studies of GLP-1 receptor-positive tissue could be conducted in vivo.  相似文献   

14.
Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular-genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography) imaging as well as magnetic resonance (MR) and in vivo optical imaging. Molecular-genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular-genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1) "indirect" reporter gene imaging; (2) "direct" imaging of endogenous molecules; or (3) "surrogate" or "bio-marker" imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular-genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular-genetic and cellular processes will complement established ex vivo molecular-biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes.  相似文献   

15.
近红外荧光蛋白因激发光和发射光波长位于近红外区,在动物组织中光吸收和光散射最低,更适宜于动物活体组织的深层成像.构建了一种携带近红外荧光蛋白(near-infrared fluorescent protein,iRFP)713基因的重组表达质粒pAAV-iRFP713,将重组表达质粒与辅助质粒共转染AAV-293细胞,包装重组腺相关病毒(recombinant adeno-associated virus,rAAV)rAAV-iRFP713.重组腺相关病毒表达载体感染体外培养的癌细胞,48h后,荧光显微镜检测显示近红外荧光蛋白在癌细胞中高效表达,荧光明亮.重组腺相关病毒表达载体注射小鼠骨骼肌,48h后,用近红外荧光活体成像系统检测证明近红外荧光蛋白在小鼠骨骼肌中表达较强, 活体组织成像清晰.实验结果表明近红外荧光蛋白在体内体外均能很好地表达并荧光成像,为动物活体组织标记和成像的研究提供新方法.  相似文献   

16.
《Médecine Nucléaire》2007,31(4):183-192
Functional and anatomical small animal imaging represents one of the most promising tool in preclinical research capable of in vivo quantitative analysis of induced abnormalities in animal models and evaluation of metabolic, functional, and morphological consequences of genomic alterations in order to establish new therapeutic and diagnostic drugs. Among all the methods, SPECT imaging has recently benefited from numerous technological developments leading to submillimeter spatial resolutions with increasing detection sensitivity. Moreover, availability and sensitivity of single photon radiotracers are serious advantages of the method, which should play an important role in pre clinical imaging. The aim of this article is to present and discuss these small animal SPECT imaging advances.  相似文献   

17.
This review emphasizes some of the challenges and benefits of in vivo imaging of the small animal lung. Because mechanical ventilation plays a key role in high-quality, high-resolution imaging of the small animal lung, the article focuses particularly on the problems of ventilation support, control of breathing motion and lung volume, and imaging during different phases of the breathing cycle. Solutions for these problems are discussed primarily in relation to magnetic resonance imaging, both conventional proton imaging and the newer, hyperpolarized helium imaging of pulmonary airways. Examples of applications of these imaging solutions to normal and diseased lung are illustrated in the rat and guinea pig. Although difficult to perform, pulmonary imaging in the small animal can be a valuable source of information not only for the normal lung, but also for the lung challenged by disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号