首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Phage lambda integrative and excisive recombination normally proceeds by a pair of sequential strand exchanges. During the first exchange reaction, the "top" strand in each recombination site is cleaved, exchanged, and religated generating a Holliday junction intermediate. This intermediate DNA structure is resolved through a pair of reciprocal "bottom" strand exchanges, leading to recombinant products. The strict co-ordination of exchange reactions ensures religation between correct partner strands only. Here we show that the directionality of recombination is altered in vivo by two mutant integrases, Int-h (E174 K) and a double mutant Int-h/218 (E174 K/E218 K). This change in directionality leads to deletion instead of inversion on substrates that carry inverted attachment sites and, depending on the pair of target sites employed, requires the presence or absence of integration host factor. Neither Fis nor Xis is involved in deletion. Sequence analyses of deletion products reveal that the newly generated hybrid attachment site exhibits a reversed genetic polarity. We demonstrate that only one of two possible hybrid site configurations is generated and discuss two pathways leading to deletion. In the first, deletion results from a wrong alignment of the two recombination sites within the synaptic complex. In the second pathway, the unco-ordinated cleavage by the mutant integrases of all four DNA strands present in a conventional Holliday junction intermediate leads to two double-stranded breaks, whereby the subsequent rejoining between "wrong" partner strands appears restricted to only two strands.  相似文献   

2.
S E Nunes-Düby  L Matsumoto  A Landy 《Cell》1989,59(1):197-206
The early events in site-specific excisive recombination were studied with phage lambda half-att sites that have no DNA to one side of the strand exchange region; they carry a single core-type integrase binding site and either P or P' arm flanking DNA. These half-attR and half-attL sites exhibit normal properties for the initial (covalent) top-strand transfer and form stable intermediates independent of later steps in the reaction. With these novel substrates we show that Xis specifically promotes the first strand exchange and that attL enhances Int cleavage at the top-strand site of attR. It is also shown that synapsis and initial strand transfers do not require DNA-DNA pairing but are mediated by protein-protein and protein-DNA interactions. These involve the two top-strand Int binding sites (required for the first strand exchange) and, in addition, one of the two bottom-strand sites (C') responsible for the second strand exchange.  相似文献   

3.
Phage lambda controls its integration and excision by differential catalysis of the forward and reverse reactions. The lambda Int protein is required for both directions, but Xis for excision only. To investigate the substrate requirements for directional control, we have characterized two mutations of the phage attachment site that are defective in integrative but not excisive recombination. Both of these mutations produce the same base change in the P'3 binding site for Int protein 79 base-pairs from the center of the crossover region for site-specific recombination. We infer that differential utilization of this distant binding site is crucial for directional control of recombination.  相似文献   

4.
The site-specific recombinase integrase encoded by bacteriophage lambda promotes integration and excision of the viral chromosome into and out of its Escherichia coli host chromosome through a Holliday junction recombination intermediate. This intermediate contains an integrase tetramer bound via its catalytic carboxyl-terminal domains to the four "core-type" sites of the Holliday junction DNA and via its amino-terminal domains to distal "arm-type" sites. The two classes of integrase binding sites are brought into close proximity by an ensemble of accessory proteins that bind and bend the intervening DNA. We have used a biotin interference assay that probes the requirement for major groove protein binding at specified DNA loci in conjunction with DNA protection, gel mobility shift, and genetic experiments to test several predictions of the models derived from the x-ray crystal structures of minimized and symmetrized surrogates of recombination intermediates lacking the accessory proteins and their cognate DNA targets. Our data do not support the predictions of "non-canonical" DNA targets for the N-domain of integrase, and they indicate that the complexes used for x-ray crystallography are more appropriate for modeling excisive rather than integrative recombination intermediates. We suggest that the difference in the asymmetric interaction profiles of the N-domains and arm-type sites in integrative versus excisive recombinogenic complexes reflects the regulation of recombination, whereas the asymmetry of these patterns within each reaction contributes to directionality.  相似文献   

5.
Site-specific recombination intermediates trapped with suicide substrates   总被引:54,自引:0,他引:54  
S E Nunes-Düby  L Matsumoto  A Landy 《Cell》1987,50(5):779-788
A family of novel substrates was designed to enable the efficient accumulation of intermediates in site-specific recombination. Strategically placed nicks allow these "suicide substrates" to initiate the reaction but prevent its completion or reversal. Consequently, it has been possible to determine that lambda site-specific recombination proceeds by a pair of sequential single-strand exchanges. These results rule out that class of models invoking a concerted cutting of all four DNA strands. The sequential strand exchanges are executed in a strictly prescribed order that is the same in both integrative and excisive recombination. This specified order appears to be governed by the arrangement of bound proteins distal to the sites of strand exchange. Furthermore, when provided with an appropriate 5' OH acceptor, the Integrase protein has the capacity to execute a single DNA strand transfer in a nonreciprocal reaction.  相似文献   

6.
Lambda integrase (Int) forms higher-order protein-DNA complexes necessary for site-specific recombination. The carboxy-terminal domain of Int (75-356) is responsible for catalysis at specific core-type binding sites whereas the amino-terminal domain (1-70) is responsible for cooperative arm-type DNA binding. Alanine scanning mutagenesis of residues 64-70, within full-length integrase, has revealed differential effects on cooperative arm binding interactions that are required for integrative and excisive recombination. Interestingly, while these residues are required for cooperative arm-type binding on both P'1,2 and P'2,3 substrates, cooperative binding at the arm-type sites P'2,3 was more severely compromised than binding at arm-type sites P'1,2 for L64A. Concomitantly, L64A had a much stronger effect on integrative than on excisive recombination. The arm-binding properties of Int appear to be intrinsic to the amino-terminal domain because the phenotype of L64A was the same in an amino-terminal fragment (Int 1-75) as it was in the full-length protein.  相似文献   

7.
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.  相似文献   

8.
Triple-base changes were made in each of the five Integrase (Int) arm-type binding sites of bacteriophage lambda. These triple changes, called ten mutants, were compared with single-base changes (hen mutants) for their effects on integrative and excisive recombination. The presence of ten or hen mutations in the P1, P'2, or P'3 sites inhibited integration, but the ten P'3 mutant was 10-fold more defective than the analogous hen mutant. The results with these mutants suggest that the P1, P'2, P'3, and possibly the P'1 sites are required for integration. In wild-type E. coli, the ten P'1 mutant reduced the frequency of excision 5-fold, whereas the hen P'1 mutant had no effect. The presence of ten mutations in the P2, P'1, or P'2 sites inhibited lambda excision in an E. coli strain deficient in the production of FIS, while hen mutations in the P2 and P'2 sites had little or no effect. The results with the ten mutants suggest that the P2, P'1, and P'2 sites are required for excision. The differences in the severity of the effects between the ten and hen mutations may be due to the inability of cooperative interactions among Int, IHF, Xis, and FIS to overcome the disruption of Int binding to sites with triple-base changes compared to sites with single-base changes.  相似文献   

9.
Tn916 and related conjugative transposons are clinically significant vectors for the transfer of antibiotic resistance among human pathogens, and they excise from their donor organisms using the transposon-encoded integrase ((Tn916)Int) and excisionase ((Tn916)Xis) proteins. In this study, we have investigated the role of the (Tn916)Xis protein in stimulating excisive recombination. The functional relevance of (Tn916)Xis binding sites on the arms of the transposon has been assessed in vivo using a transposon excision assay. Our results indicate that in Escherichia coli the stimulatory effect of the (Tn916)Xis protein is mediated by sequence-specific binding to either of its two binding sites on the left arm of the transposon. These sites lie in between the core and arm sites recognized by (Tn916)Int, suggesting that the (Tn916)Xis protein enhances excision in a manner similar to the excisionase protein of bacteriophage lambda, serving an architectural role in the stabilization of protein-nucleic acid structures required for strand synapsis. However, our finding that excision in E. coli is significantly enhanced by the host factor HU, but does not depend on the integration host factor or the factor for inversion stimulation, defines clear mechanistic differences between Tn916 and bacteriophage lambda recombination.  相似文献   

10.
Holliday junctions are a central intermediate in diverse pathways of DNA repair and recombination. The isomerization of a junction determines the directionality of the recombination event. Previous studies have shown that the identity of the central sequence of the junction may favor one of the two isomers, in turn controlling the direction of the pathway. Here we demonstrate that, in the absence of DNA sequence-mediated isomer preference, polycations are the major contributor to biasing strand cleavage during junction resolution. In the case of wild-type phage λ excision junctions, spermidine plays the dominant role in controlling the isomerization state of the junction and increases the rate of junction resolution. Spermidine also counteracts the sequence-imposed bias on resolution. The spermidine-induced bias is seen equally on supercoiled and linear excisive recombination junction intermediates, and thus is not just an artefact of in vitro recombination conditions. The contribution of spermidine requires the presence of accessory factors, and results in the repositioning of Int's core-binding domains on junctions, perhaps due to DNA-spermidine–protein interactions, or by influencing DNA conformation in the core region. Our results lead us to propose that spermidine together with accessory factors promotes the formation of the second junction isomer. We propose that this rearrangement triggers the activation of the second pair of Int active sites necessary to resolve Holliday junctions during phage λ Int-mediated recombination.  相似文献   

11.
lambda Site-specific recombination proceeds via two sequential single-strand exchanges that first generate and then resolve a Holliday recombination intermediate. The resolution of artificial Holliday junctions (chi-forms) is well suited to studying the mechanisms involved in reciprocal strand exchange because the linear products of this reaction are stable and easily quantitated. To study the interactions between Int molecules bound at the sites of strand exchange, artificial Holliday junctions containing only the seven base-pair overlap region and the four core-type Int binding sites were used as a model system. In vitro resolution of these structures yields products of both top- and bottom-strand exchange. An abortive product resulting from simultaneous cleavage of the top and bottom strands also occurs at low frequency. Inactivation of one of the four Int binding sites by multiple base substitutions does not significantly affect the efficiency of resolution but has a dramatic effect on the directionality, i.e. the choice of top- or bottom-strand exchange. When any two of the four core-type sites are similarly inactivated, strand exchange is very inefficient and the amount of aberrant cleavage is somewhat greater than for the Holliday junction with four intact Int binding sites. Analysis of the resolution products of Holliday junctions with various combinations of defective Int binding sites leads to the following conclusions: (1) three functional core-type Int binding sites are necessary and sufficient for a strand exchange; (2) the Int molecules that are partners in a strand exchange interact with Int bound to a "cross-core" site that is not directly involved in carrying out the reaction; (3) Int molecules bound to the core-type sites interact in a way that reduces the occurrence of abortive double-strand cleavage events.  相似文献   

12.
Lambda's Int protein acts as a specific topoisomerase at attachment sites, the DNA segments that are required for site-specific recombination. Int cleaves each strand of an attachment site at a unique place and creates strand exchanges by joining broken ends from two different parents. To study the action of Int topoisomerase in more detail, heteroduplex attachment sites were made by annealing strands that are complementary except for a few base pairs that lie in the region between the points of top and bottom strand exchange in the attachment site core. These heteroduplexes appear to interact normally with Int and its accessory proteins IHF and Xis. Although the heteroduplex sites are specifically cleaved by Int topoisomerase, rejoining of the broken DNA is hindered by the lack of Watson--Crick complementarity adjacent to the break. Because of this, heteroduplexes accumulate broken intermediates which are then processed in novel ways. We have used this feature to provide new information about functional differences between attachment sites, to investigate the way Xis protein controls directionality of site-specific recombination, and to demonstrate that Int protein can join strands indiscriminately and can therefore generate recombinants with either of two genetic polarities.  相似文献   

13.
M A Azaro  A Landy 《The EMBO journal》1997,16(12):3744-3755
Lambda site-specific recombination proceeds by a pair of sequential strand exchanges that first generate and then resolve a Holliday junction intermediate. A family of synthetic Holliday junctions with the branch point constrained to the center of the 7 bp overlap region was used to show that resolution of the top strands and resolution of the bottom strands are symmetrical but stereochemically distinct processes. Lambda integrase is sensitive to isomeric structure, preferentially resolving the pair of strands that are crossed in the protein-free Holliday junction. At the branch point of stacked immobile Holliday junctions, the number of purines is preferentially maximized in the crossed (versus continuous) strands if there is an inequality of purines between strands of opposite polarity. This stacking preference was used to anticipate the resolution bias of freely mobile junctions and thereby to reinforce the conclusions with monomobile junctions. The results provide a strong indication that in the complete recombination reaction a restacking of helices occurs between the top and bottom strand exchanges.  相似文献   

14.
We have performed a mutational analysis of the xis gene of bacteriophage lambda. The Xis protein is 72 amino acids in length and required for excisive recombination. Twenty-six mutants of Xis were isolated that were impaired or deficient in lambda excision. Mutant proteins that contained amino acid substitutions in the N-terminal 49 amino acids of Xis were defective in excisive recombination and were unable to bind DNA. In contrast, one mutant protein containing a leucine to proline substitution at position 60 and two truncated proteins containing either the N-terminal 53 or 64 amino acids continued to bind lambda DNA, interact cooperatively with FIS and promote excision. However, these three mutants were unable to bind DNA cooperatively with Int. Cooperativity between wild-type Xis and Int required the presence of FIS, but not the Int core-type binding sites. This study shows that Xis has at least two functional domains and also demonstrates the importance of the cooperativity in DNA binding of FIS, Xis and Int in lambda excision.  相似文献   

15.
The integrase protein of bacteriophage lambda (Int) catalyzes site-specific recombination between lambda phage and Escherichia coli genomes. Int is a tyrosine recombinase that binds to DNA core sites via a C-terminal catalytic domain and to a collection of arm DNA sites, distant from the site of recombination, via its N-terminal domain. The arm sites, in conjunction with accessory DNA-bending proteins, provide a means of regulating the efficiency and directionality of Int-catalyzed recombination. Recent crystal structures of lambda Int tetramers bound to synaptic and Holliday junction intermediates, together with new biochemical data, suggest a mechanism for the allosteric control of the recombination reaction through arm DNA binding interactions.  相似文献   

16.
Excision of the lambda prophage from the chromosome of its Escherichia coli host requires the products of the two viral genes int and xis. This paper reports a purification of the lambda xis gene product using a complementation assay in which functional Xis must be added to purified Int and an E. coli-derived host factor extract. Excisive recombination between a left (attL) and right (attR) prophage attachment site cloned on the same plasmid DNA substrate occurred efficiently under these conditions. Purified Int and Xis together could not carry out excision in vitro unless an extract derived from the E. coli host was added; purified integration host factor satisfied this requirement. Xis appears to have a molecular weight of 8800 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. It possesses no detectable endonuclease or topoisomerase activities, does not appear to bind DNA to filters, and does not increase the ability of Int to bind DNA. The addition of Xis not only stimulated excisive recombination in vitro but also inhibited integrative recombination. Xis protected Int protein from heat inactivation, suggesting a possible interaction between the two proteins. In light of these observations, possible roles for Xis in recombination are discussed.  相似文献   

17.
Z H Ye  C Y Lee 《Journal of bacteriology》1989,171(8):4146-4153
The nucleotide sequence of a staphylococcal bacteriophage L54a DNA fragment containing genes involved in site-specific recombination was determined. Mutations generated by in vitro mutagenesis were used to map and characterize the int and xis genes. The site-specific recombination functions are tightly clustered within a 1.75-kilobase stretch of DNA fragment with the gene order of attP-int-xis. The int and xis genes are transcribed divergently. The Int protein deduced from the nucleotide sequence has a molecular weight of 41,000. Int is a basic protein with 354 amino acids of which 72 are basic and 38 are acidic. The Xis protein consists of only 59 amino acids with a molecular weight of 7,180. Unlike the Xis proteins of the lambdoid bacteriophages which are all basic proteins, L54a Xis is an acidic protein containing 13 acidic and 8 basic amino acids. The Int protein is required in both integrative and excisive reactions, whereas Xis is only required in excisive reaction. A well-conserved 40-residue region, including three perfectly conserved residues found in 15 site-specific recombinases of the integrase family that have been characterized, was also found in the L54a Int protein.  相似文献   

18.
This study shows that topoisomerase II and MutS proteins share a structural motif that has, in its dimeric form, a suitable geometry for clamping the two arms of either right-handed DNA crossovers or their isostructural stacked Holliday junctions. This defines a new protein family selected by convergent evolution for sensing DNA topology and binding recombination intermediates. This study also proposes that MutS binding on 2-fold right-handed crossover provides a mechanism for strand discrimination during DNA translocation.  相似文献   

19.
Grove JI  Harris L  Buckman C  Lloyd RG 《DNA Repair》2008,7(9):1517-1530
DNA double-strand breaks threaten the stability of the genome, and yet are induced deliberately during meiosis in order to provoke homologous recombination and generate the crossovers needed to promote faithful chromosome transmission. Crossovers are secured via biased resolution of the double Holliday junction intermediates formed when both ends of the broken chromosome engage an intact homologue. To investigate whether the enzymes catalysing branch migration and resolution of Holliday junctions are directed to favour production of either crossover or noncrossover products, we engineered a genetic system based on DNA breakage induced by the I-SceI endonuclease to detect analogous exchanges in Escherichia coli where the enzymology of recombination is more fully understood. Analysis of the recombinants generated revealed approximately equal numbers of crossover and noncrossover products, regardless of whether repair is mediated via RecG, RuvABC, or the RusA resolvase. We conclude that there little or no control of crossing over at the level of Holliday junction resolution. Thus, if similar resolvases function during meiosis, additional factors must act to bias recombination in favour of crossover progeny.  相似文献   

20.
Recombination of phage λ attachment sites occurs by sequential exchange of the DNA strands at two specific locations. The first exchange produces a Holliday structure, and the second resolves it to recombinant products. Heterology for base substitution mutations in the region between the two strand exchange points (the overlap region) reduces recombination; some mutations inhibit the accumulation of Holliday structures, others inhibit their resolution to recombinant products. To see if heterology also alters the location of the strand exchange points, we determined the segregation pattern of three single and one multiple base pair substitution mutations of the overlap region in crosses with wild type sites. The mutations are known to differ in the severity of their recombination defect and in the stage of strand exchange they affect. The three single mutations behaved similarly: each segregated into both products of recombination,, and the two products of a single crossover were frequently nonreciprocal in the overlap region. In contrast, the multiple mutation preferentially segregated into one of the two recombinant products, and the two products of a single crossover appeared to be fully reciprocal. The simplest explanation of the segregation pattern of the single mutations is that strand exchanges occur at the normal locations to produce recombinants with mismatched base pairs that are frequently repaired. The segregation pattern of the multiple mutation is consistent with the view that both strand exchanges usually occur to one side of the mutant site. We suggest that the segregation pattern of a particular mutation is determined by which stage of strand exchange it inhibits and by the severity of the inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号