共查询到20条相似文献,搜索用时 15 毫秒
1.
What controls glycolysis in bloodstream form Trypanosoma brucei? 总被引:2,自引:0,他引:2
B M Bakker P A Michels F R Opperdoes H V Westerhoff 《The Journal of biological chemistry》1999,274(21):14551-14559
On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the glucose transporter on the one hand and aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-phosphate dehydrogenase (GDH) on the other hand. The other kinases, which are often thought to control glycolysis, exerted little control; so did the utilization of ATP. We identified potential targets for anti-trypanosomal drugs by calculating which steps need the least inhibition to achieve a certain inhibition of the glycolytic flux in these parasites. The glucose transporter appeared to be the most promising target, followed by ALD, GDH, GAPDH, and PGK. By contrast, in erythrocytes more than 95% deficiencies of PGK, GAPDH, or ALD did not cause any clinical symptoms (Schuster, R. and Holzhütter, H.-G. (1995) Eur. J. Biochem. 229, 403-418). Therefore, the selectivity of drugs inhibiting these enzymes may be much higher than expected from their molecular effects alone. Quite unexpectedly, trypanosomes seem to possess a substantial overcapacity of hexokinase, phosphofructokinase, and pyruvate kinase, making these "irreversible" enzymes mediocre drug targets. 相似文献
2.
《Comparative biochemistry and physiology. B, Comparative biochemistry》1981,68(2):319-322
- 1.1. The physicochemical and kinetic properties of the two major trypanosomal glycosidases, α-glucosidase (EC 3.2.1.20) and α-mannosidase (EC 3.2.1.24), were compared in bloodstream forms of Trypanosoma brucei brucei S42.
- 2.2. Both enzymes are membrane-bound and located intracellularly.
- 3.3. The results are discussed in relation to the possible role of α-glucosidase and α-mannosidase in the processing or catabolism of trypanosomal glycoproteins.
3.
4.
RNA interference (RNAi) is the technique of choice for down-regulating the gene function of suitable genes in African trypanosomes. A recent report by Subramanian and co-workers describes a high-throughput method for gene function discovery using RNAi in Trypanosoma brucei. The phenotype of most of the Open Reading Frames from chromosome 1 of T. brucei was analysed using a battery test of standard protocols. The authors propose that this technique could be used to mine the full genome of T. brucei and to reveal the core proteomic map of the other two major trypanosomatids, Trypanosoma cruzi and Leishmania major, despite the lack of a homologous mechanism of genetic silencing. 相似文献
5.
6.
7.
Wastling SL Picozzi K Wamboga C VON Wissmann B Amongi-Accup C Wardrop NA Stothard JR Kakembo A Welburn SC 《Parasitology》2011,138(12):1480-1487
Trypanosoma brucei gambiense sleeping sickness follows a long asymptomatic phase and persists in ancient foci from which epidemic clinical disease arises. A putative focus of T. b. gambiense infections has been identified, initially in mothers and young children, on the Lake Albert shoreline of Western Uganda leading to mass screening of 6207 individuals in September 2008. T. b. gambiense infections were identified by Card Agglutination Test for Trypanosomiasis (CATT) and sub-species-specific PCR although parasitological methods failed to confirm any patent trypanosome infections. In April 2009, CATT positives were re-visited; diagnosis of individuals by CATT and PCR was unstable over the two time points and parasites remained undetected, even using mini Anion Exchange Centrifugation Technique (mAECT). These observations suggest the possibility of a silent focus of disease, where all infected individuals are in a latent stage, and highlight our limited understanding of the local natural history and disease progression of T. b. gambiense in children and adults. 相似文献
8.
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. 相似文献
9.
Evolution of antigenic diversity in the tick‐transmitted bacterium Borrelia afzelii: a role for host specialization? 下载免费PDF全文
L. Råberg Å. Hagström M. Andersson S. Bartkova K. Scherman M. Strandh B. Tschirren 《Journal of evolutionary biology》2017,30(5):1034-1041
Antigenic diversity in pathogenic microbes can be a result of at least three different processes: diversifying selection by acquired immunity, host–pathogen coevolution and/or host specialization. Here, we investigate whether host specialization drives diversity at ospC (which encodes an immunodominant surface protein) in the tick‐transmitted bacterium Borrelia afzelii. We determined prevalence and infection intensity of ospC strains in naturally infected wild mammals (rodents and shrews) by 454 amplicon sequencing in combination with qPCR. Neither prevalence nor infection intensity of specific ospC strains varied in a species‐specific manner (i.e. there were no significant ospC × host species interactions). Rankings of ospC prevalences were strongly positively correlated across host species. Rankings of ospC infection intensities were correlated more weakly, but only in one case significantly < 1. ospC prevalences in the studied mammals were similar to those in ticks sampled at the study site, indicating that we did not miss any mammal species that are important hosts for specific ospC strains. Based on this, we conclude that there is at best limited host specialization in B. afzelii and that other processes are likely the main drivers of ospC diversity. 相似文献
10.
Gibson W 《Trends in parasitology》2002,18(11):486-490
The sleeping sickness trypanosomes Trypanosoma brucei rhodesiense and T. brucei gambiense are morphologically indistinguishable from each other and from T. brucei brucei, which does not infect humans. The relationships between these three subspecies have been controversial. Several years ago, the characterization of T. brucei gambiense was reviewed in an attempt to clarify and draw together the results, and to put them in the context of the biology of the organism. The discovery of a gene associated with human-serum resistance in T. brucei rhodesiense and the consequent reappraisal of the identity of this trypanosome prompt this companion article. 相似文献
11.
12.
Natalia Y. Boynak Federico Rojas Cecilia D’Alessio Salomé C. Vilchez Larrea Vanina Rodriguez Pablo D. Ghiringhelli María T. Téllez-I?ón 《PloS one》2013,8(11)
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M. 相似文献
13.
Manuela Damerow Frauke Graalfs M. Lucia S. Güther Angela Mehlert Luis Izquierdo Michael A. J. Ferguson 《The Journal of biological chemistry》2016,291(26):13834-13845
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1–3 and Manα1–6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328–9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1–6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1–3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1–2 glycosidic linkages. 相似文献
14.
Jorge Pinto Soares Maria Paula Mota José Alberto Duarte Andrew Collins Isabel Gaivão 《Cell biochemistry and function》2013,31(8):743-748
Oxidative stress has been advanced as one of the major causes of damage to DNA and other macromolecules. Although physical exercise may also increase oxidative stress, an important role has been recognized for regular exercise in improving the overall functionality of the body, as indicated by an increase in maximal aerobic uptake (O2max), and in resistance to cell damage. The aims of this study were 1) to evaluate the association between DNA damage in human lymphocytes and age and 2) to evaluate the association between DNA damage in human lymphocytes and O2max. The sample was composed of 36 healthy and nonsmoking males, aged from 20 to 84 years. O2max was evaluated through the Bruce protocol with direct measurement of oxygen consumption. The comet assay was used to evaluate the DNA damage, strand breaks and formamidopyrimidine DNA glycosylase (FPG)‐sensitive sites. We found a positive correlation of age with DNA strand breaks but not with FPG‐sensitive sites. O2max was significantly inversely related with DNA strand breaks, but this relation disappeared when adjusted for age. A significantly positive relation between O2max and FPG‐sensitive sites was verified. In conclusion, our results showed that younger subjects have lower DNA strand breaks and higher O2max compared with older subjects and FPG‐sensitive sites are positively related with O2max, probably as transient damage due to the acute effects of daily physical activity. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
PER SUNDBERG 《Biological journal of the Linnean Society. Linnean Society of London》1988,35(2):169-184
The question of whether there are shape differences between populations of Littorina saxatilis living in different environments is examined by multivariate analyses of 13 morphological characters. Principal component analysis reveals that morphologic differences between populations from habitats with contrasting degrees of wave exposure are mainly due to a general size factor, including shell thickness. Utilizing the group structure among the snails, canonical variate analysis discloses that the main character excluding size that influences subpopulation differentiation is pointedness. 相似文献
16.
17.
18.
James T. Weedon William K. Cornwell † Johannes H.C. Cornelissen Amy E. Zanne Christian Wirth David A. Coomes 《Ecology letters》2009,12(1):45-56
The carbon flux from woody debris, a crucial uncertainty within global carbon-climate models, is simultaneously affected by climate, site environment and species-based variation in wood quality. In the first global analysis attempting to explicitly tease out the wood quality contribution to decomposition, we found support for our hypothesis that, under a common climate, interspecific differences in wood traits affect woody debris decomposition patterns. A meta-analysis of 36 studies from all forested continents revealed that nitrogen, phosphorus, and C : N ratio correlate with decomposition rates of angiosperms. In addition, gymnosperm wood consistently decomposes slower than angiosperm wood within common sites, a pattern that correlates with clear divergence in wood traits between the two groups. New empirical studies are needed to test whether this difference is due to a direct effect of wood trait variation on decomposer activity or an indirect effect of wood traits on decomposition microsite environment. The wood trait–decomposition results point to an important role for changes in the wood traits of dominant tree species as a driver of carbon cycling, with likely feedback to atmospheric CO2 particularly where angiosperm species replace gymnosperms regionally. Truly worldwide upscaling of our results will require further site-based multi-species wood trait and decomposition data, particularly from low-latitude ecosystems. 相似文献
19.
Since the alpha-D-galactose-(1-->3)-D-galactose epitope has been identified to be the major target in the process of hyperacute rejection of xenografts transplanted from nonprimate donors to humans, specific inhibitors of alpha-galactosyltransferases are of broad interest. Using Trypanosoma brucei, a protozoan parasite causing sleeping sickness and Nagana, we have a very useful model system for the investigation of alpha-galactosyltransferase inhibitors, since the variant surface glycoprotein (VSG) accounts for about 10% of the total cell protein an this parasite expresses many different galactosyltransferases including the one catalysing the formation of the Galalpha1-->3Gal epitope. In order to study inhibition of galactosylation on the VSG from Trypanosoma brucei, we designed, synthesized and tested substrate analogues of trypanosomal alpha-galactosyltransferases. Effective inhibitors were a pair of diastereoisomeric UDP-galactose analogs, in which the galactose residue is linked to UDP via a methylene bridge rather than an ester linkage. Hence, galactose cannot be transferred to the respective acceptor substrate VSG or the synthetic acceptor substrate Manalpha1-->6Manalpha1S-(CH2)7-CH3, which was previously proven to replace VSG effectively [Smith et al. (1996) J Biol Chem 271:6476-82]. Inhibitors have been prepared starting from 1-formyl galactal. The final condensation was performed using UMP morpholidate leading to a pair of diastereomeric compounds in 39% or 30% yield, respectively. These compounds were tested using alpha-galactosyltransferases prepared from T. brucei membranes and lactose synthetase from bovine milk. While the K(M)-value for UDP-galactose was determined as 59 microM on bovine lactose synthetase, the K(I)-values for both inhibitors were 0.3 mM and 1.1 mM respectively, showing that these inhibitors are unable to inhibit enzyme activity significantly. However, using the N-glycan specific alpha-galactosyltransferase from trypanosomes, the K(M)-value was determined as 20 microM, while the K(I)-values were 34 microM and 21 microM respectively. Interestingly, other trypanosomal alpha-galactosyltransferases, which modify the GPI membrane anchor, are 2 orders of magnitude less effected by the inhibitor. 相似文献
20.
Leaf expansion and xylem cytokinin concentration ([X-CK]) decrease in response to nitrogen (N) deprivation. Debate continues over cause, effect, and correlation. Supporting studies provide, at best, correlative evidence that [X-CK] controls leaf growth in response to N-deprivation, while dissenting studies indicate that leaf growth responses to N can be independent of changes in X-CK supply to leaves. A model is proposed to evaluate the physiological significance to leaf growth of changes in plant and environment N concentrations, and plant CK concentrations. 相似文献