首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better predict the consequences of blocking signal transduction pathways as a means of controlling intestinal inflammation, we are characterizing the pathways up-regulated by IL-1 in intestinal epithelial cells (IEC). IL-1beta induced increased mRNA levels of MIP-2, MCP-1, RANTES, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) in the IEC-18 cell line. IL-1beta activated NF-kappaB but not ERK or p38. Infecting cells with adenovirus expressing a mutated gene for IkappaBalpha (IkappaBAA) blocked IL-1-induced mRNA increases in MIP-2, MCP-1, and iNOS but not COX-2 or RANTES. Expression of IkappaBAA attenuated the IL-1-induced increase in COX-2 protein. Unexpectedly, RANTES mRNA increased, and protein was secreted by cells expressing IkappaBAA in the absence of IL-1. Adenovirus-expressing IkappaBAA, blocking protein synthesis, and IL-1beta all resulted in activation of JNK. The JNK inhibitor SP600125 prevented the RANTES increases by all three stimuli. A human enterocyte line was similarly examined, and both NF-kappaB and JNK regulate IL-1-induced RANTES secretion. We conclude that in IEC-18, IL-1beta-induced increases in mRNA for MIP-2, MCP-1, and iNOS are NF-kappaB-dependent, whereas regulation of RANTES mRNA is independent of NF-kappaB but is positively regulated by JNK. IL-1beta-induced mRNA increases in COX-2 mRNA are both NF-kappaB- and MAPK-independent but the translation of COX-2 protein is NF-kappaB-dependent. This pattern of signaling due to a single stimulus exposed the complexities of regulating inflammatory genes in IEC.  相似文献   

2.
Epidermal growth factor (EGF) is one of the trophic factors for intestinal adaptation after small bowel transplantation (SBT). A recent report indicates that nitric oxide (NO) has cytoprotective effects on bacterial translocation (BT) after SBT. We hypothesized that EGF stimulates the expression of the inducible NO synthase (iNOS) gene in the graft after SBT, followed by increased production of NO, resulting in the decrease of BT. Intestinal epithelial cells (IEC)-6 were treated with EGF and/or IL-1beta in the presence and absence of phosphatidylinositol 3-kinase (PI3-kinase) and EGF receptor kinase inhibitors (LY-294002 and tyrphostin A25). The induction of NO production and iNOS and its signal molecules, including the inhibitory protein of NF-kappaB (IkappaB), NF-kappaB, and Akt, were analyzed. IL-1beta stimulated the degradation of IkappaB and the activation of NF-kappaB but had no effect on iNOS induction. EGF, which had no effect on the NF-kappaB activation and iNOS induction, stimulated the upregulation of type 1 IL-1 receptor (IL-1R1) through PI3-kinase/Akt. Simultaneous addition of EGF and IL-1beta stimulated synergistically the induction of iNOS, leading to the increased production of NO. Our results indicate that EGF and IL-1beta stimulate two essential signals for iNOS induction in IEC-6 cells: the upregulation of IL-1R1 through PI3-kinase/Akt and the activation of NF-kappaB through IkappaB kinase, respectively. Simultaneous addition of EGF and IL-1beta can enhance the production of NO, which may contribute to the cytoprotective effect of EGF against intestinal injury.  相似文献   

3.
Goodrich ME  McGee DW 《Cytokine》1998,10(12):948-955
Intestinal epithelial cells (IEC) secrete a variety of cytokines and, because of their close proximity to B cells in the lamina propria, may affect local antibody production via these cytokines. However, studies have not yet addressed which and to what extent these IEC-derived cytokines may affect B cell antibody production. In this study, rat mesenteric lymph node B cells were cultured with culture supernatants from the rat IEC-6 intestinal epithelial cell line to determine their effect on immunoglobulin (Ig) secretion. Unstimulated IEC-6 cells were found to secrete sufficient levels of IL-6 to enhance IgA, IgG and IgM secretion by unstimulated B cells. However, culture of lipopolysaccharide (LPS)-stimulated B cells with the unstimulated IEC-6 supernatant resulted in an enhancement of IgA secretion while IgM secretion was significantly suppressed. Depletion of the IEC-6 supernatant using cytokine specific antibodies revealed that both interleukin 6 (IL-6) and transforming growth factor beta (TGF-beta) were responsible for the enhanced IgA secretion while TGF-beta suppressed IgM secretion. More importantly, culture supernatants from LPS stimulated IEC-6 cells contained enhanced levels of IL-6 which enhanced both IgG and IgA production and partially overcame the suppressive effect of TGF-beta on IgM secretion. These results suggest that intestinal epithelial cells may secrete IL-6 and TGF-beta to regulate local B cell antibody secretion and their effect may be highly dependent upon the activation state of the epithelial cells.  相似文献   

4.
5.
We previously reported that IL-1beta and the decoy receptor for IL-1 (IL-1RII) are expressed by intestinal epithelial cells (IEC) during detachment-induced cell death, or "anoikis." We now investigated whether IL-1 regulates anoikis. Skewing the balance in favor of IL-1, by blocking IL-1RII or by adding IL-1beta to detached rat IEC-18 cells, reduced cell death. The protective effect of anti-IL-1RII was reversed by blocking IL-1beta, confirming the anti-apoptotic effect was due to endogenous IL-1beta. Added IL-1beta also rescued cells from anoikis and was associated with considerable aggregation of the detached cells. Aggregate formation and the anti-apoptotic effect of added IL-1beta were prevented by blocking E-cadherin, indicating that IL-1 promoted aggregation and indirectly, survival. On the other hand, treating detached cells with IL-1beta and an anti-beta(1) integrin antibody abolished the protective effect of IL-1beta but not the aggregates. We conclude that the anti-apoptotic effect of IL-1 is mediated through a beta(1) integrin-dependent event secondary to cell-cell adhesion. This illustrates a previously uncharacterized role for IL-1 in the intestine wherein this cytokine may facilitate the preservation of the epithelial monolayer integrity.  相似文献   

6.
F Xie  S Sun  A Xu  S Zheng  M Xue  P Wu  J H Zeng  L Bai 《Cell death & disease》2014,5(1):e1006
Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn''s disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor that contributes to IBD progression. Targeting AOPP-induced cellular mechanisms might emerge as a promising therapeutic option for patients with IBD.  相似文献   

7.
IL-17 expression is restricted to activated T cells, whereas the IL-17R is expressed in a variety of cell types including intestinal epithelial cells. However, the functional responses of intestinal epithelial cells to stimulation with IL-17 are unknown. Moreover, the signal transduction pathways activated by the IL-17R have not been characterized. IL-17 induced NF-kappa B protein-DNA complexes consisting of p65/p50 heterodimers in the rat intestinal epithelial cell line IEC-6. The induction of NF-kappa B correlated with the induction of CXC and CC chemokine mRNA expression in IEC-6 cells. IL-17 acted in a synergistic fashion with IL-1 beta to induce the NF-kappa B site-dependent CINC promoter. Induction of the CINC promoter by IL-17 in IEC-6 cells was TNF receptor-associated factor-6 (TRAF6), but not TRAF2, dependent. Furthermore, IL-17 induction of the CINC promoter could be inhibited by kinase-negative mutants of NF-kappa B-inducing kinase and I kappa B kinase-alpha. In addition to activation of the NF-kappa B, IL-17 regulated the activities of extracellular regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in IEC-6 cells. Whereas the IL-17-mediated activation of extracellular regulated kinase mitogen-activated protein kinases was mediated through ras, c-Jun N-terminal kinase activation was dependent on functional TRAF6. These data suggest that NF-kappa B-inducing kinase serves as the common mediator in the NF-kappa B signaling cascades triggered by IL-17, TNF-alpha, and IL-1 beta in intestinal epithelial cells.  相似文献   

8.
9.
Like RIE-1 cells, two of the IEC series of rat intestinal epithelial cell lines were found to express functional angiotensin receptors. As in RIE-1 cells, treatment of IEC-6 or IEC-18 cells with angiotensin II (AII) activated phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis although (in contrast to RIE-1 cells) the magnitude of AII-induced PIP2 hydrolysis was small and not associated with a mitogenic response in either IEC cell line. In terms of their other functional responses to AII (activation of protein kinase C (PKC) and a small elevation of cyclic AMP), IEC-6 cells are otherwise similar to RIE-1 cells whereas IEC-18 cells exhibit some phenotypic differences to the other two cell types. Thus, whereas IEC-6 and RIE-1 cells each express the AT1 subtype of angiotensin receptor, the higher affinity receptors on IEC-18 cells are 'atypical', being insensitive to both AT1- and AT2-specific angiotensin receptor antagonists. Furthermore, in contrast to its effects in IEC-6 and RIE-1 cells, AII neither activates PKC nor modulates cyclic AMP levels in IEC-18 cells. Whereas IEC-18 cells express the myristoylated alanine-rich C-kinase substrate (MARCKS), immunoreactive MARCKS was not detected in IEC-6 or RIE-1 cells.  相似文献   

10.
Glomerular mesangial cells (MC) were isolated from rats and cultured for a prolonged period of time, resulting in a homogeneous cell population. MC were characterized as belonging to the smooth muscle type. They were negative for MHC class II expression. IFN-gamma and TNF alpha suppressed the proliferation of MC, demonstrating receptors for these cytokines on MC. IFN-gamma or TNF alpha, respectively, enhanced basal MHC class I Ag expression of proliferating cells in culture. The combination of the two cytokines yielded stronger effects. IL-1 beta was ineffective in enhancing MHC class I Ag expression, although MC possessed receptors for this cytokine. IFN-gamma dose dependently induced the expression of MHC class II Ag, while TNF alpha or IL-1 beta were ineffective alone. The combination of IFN-gamma with TNF alpha or IL-1 beta resulted in an enhanced induction of MHC class II Ag, compared to IFN-gamma administration alone. These findings suggest that proliferating mesangial cells of the smooth muscle type may participate in local inflammatory responses or substitute for macrophages by meeting the accessory cell requirement in the interaction with T lymphocytes. Furthermore, the data have important implications for the evaluation of the role of mesangial cells in autoimmune disease of the kidney.  相似文献   

11.
11beta-Hydroxysteroid dehydrogenase (11betaHSD) converts endogenous glucocorticoids to their biologically inactive 11-dehydro derivatives and is therefore able to determine, at least in part, the biological action of glucocorticoids. Type 1 11betaHSD has both oxidase and reductase activities interconverting corticosterone and 11-dehydrocorticosterone, whereas type 2 11betaHSD has only oxidase activity converting corticosterone to 11-dehydrocorticosterone. Since 11betaHSD expression is regulated during development and by hormones in a tissue-specific manner and since glucocorticoids play an important role in postnatal intestinal maturation, we investigated the role of corticosteroids and cytodifferentiation in the regulation of intestinal 11betaHSD. Using rat intestinal organ cultures and epithelial cell lines derived from rat small intestine (IEC-6, IEC-18) and from human colon adenocarcinoma (Caco-2, HT-29), we analyzed the effect of corticosteroids and cytodifferentiation on 11betaHSD. Screening of the clonal cell lines showed that Caco-2 cells expressed by far the greatest 11betaHSD2 oxidase activity, lower activity was observed in HT-29 cells, and lowest activity was seen in IEC cells. Treatment with dexamethasone (50 nM) increased the activity of 11betaHSD2 in IEC-6 cells (+59%) and HT-29 cells (+31%), whereas aldosterone (50 nM) stimulated 11betaHSD2 in IEC-6 cells only (+31%). Caco-2 cells and IEC-18 cells did not respond to corticosteroids. Growth of IEC-6 cells on Matrigel, treatment of HT-29 cells with butyrate, and postconfluency of Caco-2 cells increased not only the markers of cytodifferentiation, such as alkaline phosphatase and sucrase, but also the activity of 11betaHSD2 in all of these cell lines (IEC-6, +96%; HT-29, +139%; Caco-2, +95%). Addition of corticosteroids to these more differentiated cell cultures did not enhance 11betaHSD2 activity. In intestinal organ cultures of suckling rat small intestine, dexamethasone and aldosterone stimulated 11betaHSD by more than 300%. We conclude that corticosteroids markedly and differentially regulate intestinal 11betaHSD2 and that cytodifferentiation of intestinal epithelial cells is associated with upregulation of 11betaHSD2 activity that is independent of corticosteroids.  相似文献   

12.
13.
Interleukin-18 (IL-18) mRNA is expressed in islets of NOD mice during the early stages of insulitis and IL-18 has therefore been implicated as a contributing factor in immune-mediated beta-cell destruction. However, a recent study failed to show any effect of human IL-18 on the function of isolated rat islets. Since species differences have been shown between human and murine IL-18, the aims of this study were to investigate 1) if species homologous IL-18 alone or following IL-12 pre-exposure affected rat islet function, 2) if IL-18 dose-dependently modulated IL-1 beta or interferon-gamma (IFN-gamma) + tumor necrosis factor-alpha (TNF-alpha) actions on islet function, and 3) if IL-18 and IL-18 receptor (IL-18R) were expressed in rat islet beta-cells. Insulin release and nitric oxide (NO) production from isolated rat islets were measured after incubation with or without cytokines. RT-PCR was used to quantitate mRNA expression of IL-18 and the IL-18R signaling chain (IL-18R beta). There were no significant effects of 0.625-10 nM recombinant murine (rm) IL-18 alone on accumulated or glucose-challenged insulin release or NO production after 24 hours. Fifteen pg/ml of recombinant human (rh) IL-1 beta as well as 200 U/ml recombinant rat (rr) IFN-gamma + 250 U/ml rhTNF-alpha significantly increased islet NO production and inhibited both accumulated and glucose-challenged islet insulin release. However, rmIL-18 failed to modulate these effects of IL-1 beta or IFN-gamma + TNF-alpha. Although IL-12 induces IL-18R expression in Th1 and B lymphocytes, 24-hours rmIL-12 preincubation neither sensitized islets to effects of 10 nM of rm or rrIL-18 alone nor primed the islets to IL-1 beta actions on insulin release and NO production. IL-18R beta mRNA, which was expressed in human peripheral blood mononuclear cells (PBMC), was not expressed in rat insulinoma (RIN) cells or in isolated rat islets, even after exposure to IL-1 beta and/or IFN-gamma + TNF-alpha or IL-12. IL-18 mRNA was constitutively expressed in RIN cells, in FACS-purified rat beta-cells and in intact rat and mouse islets, and was up-regulated by IFN-gamma in an interferon regulatory factor-1- IRF-1) and NO - independent manner. However, IL-18 protein was undetectable in lysates and supernates of RIN cells by ECL, Western blotting and immunoprecipitation. In conclusion, we show for the first time that IL-18 but not IL-18R is expressed in rodent islet beta-cells. The physiological importance and pathological role of IL-18 originating from islet beta-cells deserve further investigation.  相似文献   

14.
Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.  相似文献   

15.
We have demonstrated that although intestinal epithelial cells in fetuses and young rats do not express Ia antigens, in adult rats intestinal epithelial cells do express Ia antigens, as indicated by immunoperoxidase staining with monoclonal antibodies. Ia expression by intestinal epithelial cells appeared to be related to an increase in the number of intraepithelial lymphocytes (IEL). Most of the IEL were T cells and expressed the phenotype associated with cytotoxic/suppressor T cells, and a large number contained cytoplasmic granules. To directly study a possible modulating effect of IEL on intestinal epithelium, an Ia-negative intestinal epithelial cell line (IEC 17) of rat origin was cultured in the presence of supernatants obtained from Con A- or PHA-stimulated lymphocytes. IEL, as well as spleen cells but not bone marrow cells, were able to secrete a factor(s) capable of inducing Ia antigens on IEC 17 cells, as judged by immunoperoxidase staining and radioimmunoassay. Ia-positive IEC 17 cells were detectable after 12 hr and maximum Ia expression was obtained by 48-hr incubation. Persistence of Ia expression by intestinal epithelial cells required the continued presence of Ia-inducing factor in the medium. Lymphocyte proliferation was not essential for the secretion of the Ia-inducing factor(s). The characteristics and the kinetics of secretion of the Ia-inducing factor were similar to that of an interferon-like activity, but not of interleukin 2. Con A-induced supernatants from IEL and spleen cells were also capable of suppressing the growth of IEC 17 cells. The results of this study indicate that IEL, because of their close association with intestinal epithelial cells, may be involved in modulating a variety of epithelial cell functions, including the expression of Ia antigens. This leads us to speculate that Ia-positive epithelial cells, like Ia-positive macrophages and dendritic cells, may be involved in antigen presentation to T lymphocytes.  相似文献   

16.
Intestinal epithelial cells have been shown to produce IL-1beta in vivo. This gene expression is rapid and precedes most determinants of inflammation, suggesting a pivotal role for IL-1beta in the early events leading to inflammation. To better understand the mechanisms leading to this IL-1beta production, we have developed an in vitro model system employing a nontransformed intestinal epithelial cell line that does not constitutively express IL-1beta. Following detachment, these cells rapidly expressed IL-1beta mRNA. This expression was enhanced, but not induced, by LPS. IL-1beta protein was detected by immunoprecipitation in the culture medium from passaged IEC-18 but not intracellularly, suggesting an efficient secretion of the molecule following induction. Interestingly, culture supernatants from passaged cells were without IL-1 bioactivity, suggesting the presence of an inhibitor as well. RT-PCR and Western blot analysis showed expression of IL-1RII by IEC-18 following detachment, possibly explaining the observed lack of bioactivity. These results indicate a novel pathway for IL-1beta production and suggest that proinflammatory effects of IEC-derived IL-1 may be modulated by the simultaneous production of IL-1 antagonists.  相似文献   

17.
18.
Li G  Lubin FD  McGee DW 《Cellular immunology》2004,231(1-2):30-39
Intestinal epithelial cells (IECs) produce several potent cytokines in response to interleukin-1 (IL-1) and may play a role in the inflammatory response. Previously, we determined that treatment of the Caco-2 cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced cytokine secretion and mRNA levels, suggesting that the alpha3beta1 integrin may play a role in the regulation of IEC cytokine responses to IL-1. In this report, treatment of the Caco-2 cells with the anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced levels of NF-kappaB binding activity in nuclear extracts, as determined by EMSA, as well as phosphorylation and degradation of the inhibitor, I(kappa)B(alpha). The anti-integrin antibody treatment was also found to suppress I(kappa)B kinase (IKK) activity and IKK(beta) phosphorylation. Culture of the Caco-2 cells on purified laminin-5, the ligand for the alpha3beta1 integrin, also resulted in suppression of IL-1 induced phosphorylation of I(kappa)B(alpha) and IKK(beta). Together with our previous findings, these results suggest that alpha3beta1 integrin binding results in a suppression of the IL-1 signaling pathway leading to the activation of NF-(kappa)B and ultimately IEC cytokine responses. These studies define a novel regulatory mechanism which may be important in the control of IEC cytokine responses during inflammation.  相似文献   

19.
Cytokine signaling involves the participation of many adaptor proteins, including the docking protein TNF receptor-associated factor-2 (TRAF-2), which is believed to transmit the TNF-alpha signal through both the I kappa B/NF-kappa B and c-Jun N-terminal kinase (JNK)/stress-related protein kinase (SAPK) pathways. The physiological role of TRAF proteins in cytokine signaling in intestinal epithelial cells (IEC) is unknown. We characterized the effect of a dominant-negative TRAF-2 delivered by an adenoviral vector (Ad5dnTRAF-2) on the cytokine signaling cascade in several IEC and also investigated whether inhibiting the TRAF-2-transmitting signal blocked TNF-alpha-induced NF-kappa B and IL-8 gene expression. A high efficacy and level of Ad5dnTRAF-2 gene transfer were obtained in IEC using a multiplicity of infection of 50. Ad5dnTRAF-2 expression prevented TNF-alpha-induced, but not IL-1 beta-induced, I kappa B alpha degradation and NF-kappa B activation in NIH-3T3 and IEC-6 cells. TNF-alpha-induced JNK activation was also inhibited in Ad5dnTRAF-2-infected HT-29 cells. Induction of IL-8 gene expression by TNF-alpha was partially inhibited in Ad5dnTRAF-2-transfected HT-29, but not in control Ad5LacZ-infected, cells. Surprisingly, IL-1 beta-mediated IL-8 gene expression was also inhibited in HT-29 cells as measured by Northern blot and ELISA. We concluded that TRAF-2 is partially involved in TNF-alpha-mediated signaling through I kappa B/NF-kappa B in IEC. In addition, our data suggest that TRAF-2 is involved in IL-1 beta signaling in HT-29 cells. Manipulation of cytokine signaling pathways represents a new approach for inhibiting proinflammatory gene expression in IEC.  相似文献   

20.
We have investigated the effects of dietary nucleotides on intraepithelial lymphocytes (IEL) and intestinal epithelial cells (IEC) in weanling mice. The proportion of T-cell receptor (TCR) gammadelta+ IEL in BALB/c mice fed a diet supplemented with nucleotides (NT(+) diet) was significantly higher than that in mice fed the nucleotide-free diet, while the proportion of TCR alphabeta+ IEL in NT(+) diet-fed mice was significantly decreased. The change of the TCR alphabeta+/TCR gammadelta+ ratio was mainly observed in a CD8 alphaalpha+ subset of IEL. IEC from NT(+) diet-fed mice produced a higher level of IL-7, which is important in the development of TCR gammadelta+ IEL, than those from control diet-fed mice. The expression levels of IL-7 and IL-2 receptors on IEL were not different between the two dietary groups. Our findings suggest that the increased population of a TCR gammadelta+ IEL subset by feeding nucleotides may be caused by the increased production of IL-7 by IEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号