首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Slowing of intestinal transit by fat is abolished by immunoneutralization of peptide YY (PYY), demonstrating a key role for this gut peptide. How PYY slows intestinal transit is not known. We tested the hypothesis that the slowing of intestinal transit by PYY may depend on an ondansetron-sensitive serotonergic pathway and a naloxone-sensitive opioid pathway. In a fistulated dog model, occluding Foley catheters were used to compartmentalize the small intestine into proximal (between fistulas) and distal (beyond midgut fistula) half of gut. Buffer (pH 7.0) was perfused into both proximal and distal gut, and PYY was delivered intravenously. Ondansetron or naloxone was mixed with buffer and delivered into either the proximal or distal half of gut. Intestinal transit was measured across the proximal half of the gut. The slowing of intestinal transit by PYY was abolished when either ondansetron or naloxone was delivered into the proximal, but not the distal gut, to localize the two pathways to the efferent limb of the slowing response. In addition, 5-HT slows intestinal transit with marker recovery decreased from 76.2 +/- 3.6% (control) to 33.5 +/- 2.4% (5-HT) (P < 0.0001) but was reversed by naloxone delivered into the proximal gut with marker recovery increased to 79.9 +/- 7.2% (P < 0.0005). We conclude that the slowing of intestinal transit by PYY depends on serotonergic neurotransmission via an opioid pathway.  相似文献   

2.
Although the enteric reflex pathway triggered by volume distension is known to depend on an adrenergic nerve, it is not known whether the slowing of intestinal transit by fat or peptide YY (PYY) also depends on an adrenergic pathway. The aim of this study was to test the hypotheses that the slowing of transit by fat or PYY may depend on a beta-adrenergic pathway, and this adrenergic pathway may act via the serotonergic and opioid pathways previously observed for the slowing of transit by fat. Eighteen dogs were equipped with duodenal and midgut fistulas. The small intestine was compartmentalized into the proximal and distal half of gut. The role of adrenergic, serotonergic, and opioid pathways was then tested in the slowing of intestinal transit by fat, PYY, and norepinephrine. Intestinal transit results were compared as the cumulative percent marker of recovery over 30 min. We found that the slowing of transit by fat, PYY, or norepinephrine was reversed by propranolol. In addition, the slowing effect of fat was reversed by metoprolol (beta1-adrenoreceptor antagonist) but not phentolamine (alpha-adrenoreceptor antagonist). Furthermore, norepinephrine-induced slowing of transit was reversed by ondansetron (5-HT3 receptor antagonist) or naloxone (opioid receptor antagonist). Extending these physiological results, we also found by immunohistochemistry that beta1-adrenoreceptors are expressed by neurons of the intrinsic plexuses of the small intestine. We conclude that the slowing of intestinal transit by fat or PYY depends on a beta-adrenergic pathway and that this adrenergic pathway acts on serotonergic and opioid pathways.  相似文献   

3.
Intestinal transit of gas is normally adapted to the luminal gas load, but in some patients impaired transit may lead to gas retention and symptoms. We hypothesized that intestinal gas transit is regulated by reflex mechanisms released by segmental distension at various gut levels. In 24 healthy subjects, we measured gas evacuation and perception of jejunal gas infusion (12 ml/min) during simultaneous infusion of duodenal lipids mimicking the postprandial caloric load (Intralipid, 1 kcal/min). We evaluated the effects of proximal (duodenal) distension (n = 8), distal (rectal) distension (n = 8), and sham distension, as control (n = 8). Duodenal lipid infusion produced gas retention (366 +/- 106 ml) with low abdominal perception (1.5 +/- 0.8 score). Distension of either the duodenum or rectum during lipid infusion expedited gas transit and prevented retention (-120 +/- 164 and -124 +/- 162 ml retention, respectively; P < 0.05 vs. control). However, the tolerance to the intestinal gas load differed markedly, depending on the site of distension; perception remained low during rectal distension (2.6 +/- 0.7 score; not significant vs. control) but increased during duodenal distension (4.4 +/- 0.7 score; P < 0.05 vs. control). We conclude that focal gut distension, either at proximal or distal sites, accelerates gas transit, but the symptomatic response depends on the site of stimulation.  相似文献   

4.
Acupuncture is useful for functional bowel diseases, such as constipation and diarrhea. However, the mechanisms of beneficial effects of acupuncture on colonic function have scarcely ever been investigated. We tested the hypothesis that electroacupuncture (EA) at ST-36 stimulates colonic motility and transit via a parasympathetic pathway in conscious rats. Hook-shaped needles were inserted at bilateral ST-36 (lower limb) or BL-21 (back) and electrically stimulated at 10 Hz for 20 min. We also studied c-Fos expression in response to EA at ST-36 in Barrington's nucleus of the pons. EA at ST-36, but not BL-21, significantly increased the amplitude of motility at the distal colon. The calculated motility index of the distal colon increased to 132 +/- 9.9% of basal levels (n = 14, P < 0.05). In contrast, EA at ST-36 had no stimulatory effects in the proximal colon. EA at ST-36 significantly accelerated colonic transit [geometric center (GC) = 6.76 +/- 0.42, n = 9, P < 0.001] compared with EA at BL-21 (GC = 5.23 +/- 0.39, n = 7). The stimulatory effect of EA at ST-36 on colonic motility and transit was abolished by pretreatment with atropine. EA-induced acceleration of colonic transit was also abolished by extrinsic nerve denervation of the distal colon (GC = 4.69 +/- 0.33, n = 6). The number of c-Fos-immunopositive cells at Barrington's nucleus significantly increased in response to EA at ST-36 to 8.1 +/- 1.1 cells/section compared with that of controls (2.4 +/- 0.5 cells/section, n = 3, P < 0.01). It is concluded that EA at ST-36 stimulates distal colonic motility and accelerates colonic transit via a sacral parasympathetic efferent pathway (pelvic nerve). Barrington's nucleus plays an important role in mediating EA-induced distal colonic motility in conscious rats.  相似文献   

5.
Lin HC  Chey WY 《Regulatory peptides》2003,114(2-3):131-135
We tested the hypothesis that the release of cholecystokinin (CCK) and peptide YY (PYY) may be independent of the region of the small intestine exposed to fat. In five dogs equipped with duodenal and midgut fistulas, the small intestine was compartmentalized so that fat was confined to either the proximal or distal one-half of the gut. Plasma CCK and PYY levels were measured by radioimmunoassay and compared by the square root of the area under the curve (sqrt AUC), representing the plasma peptide concentration over time. CCK was released similarly whether fat was delivered into the proximal (69.9+/-4.7 pM) or distal (71.0+/-5.5 pM) gut, but significantly more CCK (88.9+/-5.6 pM; p<0.05) was released when both the proximal and distal gut were perfused simultaneously with fat. PYY was released similarly whether fat was delivered into the proximal (34.9+/-2.6 pM) or distal (40.0+/-1.2 pM) gut or both (38.6+/-2.2 pM). We conclude that CCK and PYY are released by fat in either the proximal or distal one-half of the small intestine.  相似文献   

6.
Peptide YY (PYY) is released when PYY cells in short term culture are exposed to fat suggesting that this peptide may be released by fat in the distal gut without neural stimulation. PYY is also released by fat in the proximal 1/2 of small intestine. To test the hypothesis that the release of PYY by fat in the proximal but not distal intestine may depend on an atropine-sensitive, cholinergic pathway, PYY levels were compared in four dogs equipped with duodenal and mid-intestinal fistulas when 60 mM oleate was perfused into either the proximal (between fistulas) or distal (beyond mid-intestinal fistula) 1/2 of gut at 2 ml/min for 120 min with intravenous administration of saline or atropine. We found that, when fat was confined to the proximal 1/2 of the intestine, PYY release was reduced following intravenous atropine when compared with saline (p<0.01). However, when fat was confined to the distal 1/2 of the intestine, PYY release was not affected by the intravenous atropine. We conclude that PYY release by fat in the proximal but not distal intestine depends on an atropine-sensitive, cholinergic pathway.  相似文献   

7.
Bariatric surgeries, such as gastric bypass, result in dramatic and sustained weight loss that is usually attributed to a combination of gastric volume restriction and intestinal malabsorption. However, studies parceling out the contribution of enhanced intestinal stimulation in the absence of these two mechanisms have received little attention. Previous studies have demonstrated that patients who received intestinal bypass or Roux-en-Y surgery have increased release of gastrointestinal hormones. One possible mechanism for this increase is the rapid transit of nutrients into the intestine after eating. To determine whether there is increased secretion of anorectic peptides produced in the distal small intestine when this portion of the gut is given greater exposure to nutrients, we preformed ileal transpositions (IT) in rats. In this procedure, an isolated segment of ileum is transposed to the jejunum, resulting in an intestinal tract of normal length but an alteration in the normal distribution of endocrine cells along the gut. Rats with IT lost more weight (P < 0.05) and consumed less food (P < 0.05) than control rats with intestinal transections and reanastomosis without transposition. Weight loss in the IT rats was not due to malabsorption of nutrients. However, transposition of distal gut to a proximal location caused increased synthesis and release of the anorectic ileal hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY; P < 0.01). The association of weight loss with increased release of GLP-1 and PYY suggests that procedures that promote gastrointestinal endocrine function can reduce energy intake. These findings support the importance of evaluating the contribution of gastrointestinal hormones to the weight loss seen with bariatric surgery.  相似文献   

8.
M Pairet  Y Ruckebusch 《Life sciences》1984,35(16):1653-1658
Myoelectrical activity was recorded in the proximal and distal colon of rabbits using chronically implanted electrodes. The motility in both the proximal and distal colon was inhibited by the intravenous (IV) administration of the following opioid agonists for mu receptors: morphine and fentanyl, kappa receptors: ethylketazocine (EKC) and U 50 488 H, and delta receptors: D-Ala2 D-Leu5-enkephalin (DADLE) and D-Ser2 Leu-enkephalin-Thr6 (DSLET). In contrast, the myoelectric activity in the distal colon was increased during the infusion of an endogenous kappa opioid agonist, dynorphin (DYN). All of these effects were prevented by naloxone pretreatment. During in vitro studies using extraluminal force transducers, fentanyl, U 50 488 H and DSLET inhibited spontaneous contractions of the proximal colon, but U 50 488 H and DSLET caused a substantial increase in the motility of the distal colon. The observed motor responses in the proximal and distal colon following opioid agonist administration indicate that the control of these two intestinal segments may be different. It is suggested that the stimulatory effect of dynorphin on the distal colon is peripherally-mediated while inhibition of the whole colon by opioid agonists regardless of subtypes seems to be centrally-mediated.  相似文献   

9.
The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 +/- 1.2 vs. 49 +/- 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 +/- 0.11 vs. 1.3 +/- 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 +/- 1.0 and 34 +/- 0. 8 vs. 47 +/- 1.3 and 43 +/- 1.2%; frequency, 1.4 +/- 0.07 and 1.6 +/- 0.06 vs. 1.1 +/- 0.14 and 1.0 +/- 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.  相似文献   

10.
After 6 weeks feeding on either a high-cholesterol/fat (H) or a low-cholesterol/fat (L) diet, jejunal and colonic uptake was measured using a previously validated in vitro technique in control rabbits with an intact intestinal tract (C) and in animals submitted to the surgical removal of the distal half of the small intestine (R). The uptake of hexoses and fatty acids was influenced by ileal resection and by diet. Dietary manipulation altered the passive and active transport properties of the intestine and had a different effect on intestinal transport in animals with an ileal resection than in animals with an intact small intestine.  相似文献   

11.
The opioid nature of kentsin (Thr-Pro-Arg-Lys) and its ability to alter pain perception and intestinal transit were examined. Kentsin (30,000 nM) did not inhibit electrically stimulated contractions of the guinea pig ileum (GPI) or mouse vas deferens (MVD), nor did it cause a rightward displacement of the inhibitory concentration-response curves of the mu-selective opioid agonist PL017 in the GPI or the delta-selective agonist DPDPE in the MVD. Kentsin (10,000 nM) did not displace [3H] naloxone from rat brain homogenates. These results indicate that kentsin lacks opioid agonist and mu and delta opioid antagonist properties and does not bind to opioid receptors. In vivo, kentsin produced dose-dependent analgesia in both the hotplate and abdominal stretch tests when administered intracerebroventricularly (ICV) and intrathecally but not intravenously. The central analgesic effect of kentsin was partially antagonized by the opioid antagonist naloxone. Kentsin inhibited intestinal transit in a dose-dependent manner after ICV administration only. The intestinal antitransit effect of kentsin was not blocked by pretreatment with naloxone. These results suggest that kentsin acts centrally to produce both opioid and non-opioid effects. Further, the opioid-mediated analgesic effects of kentsin involve mechanisms other than direct interaction with opioid receptors.  相似文献   

12.
Glucagon-like peptide 1 (GLP-1) is a gastrointestinal hormone secreted in response to meal ingestion by enteroendocrine L cells located predominantly in the lower small intestine and large intestine. GLP-1 inhibits the secretion and motility of the upper gut and has been suggested to play a role in the "ileal brake." In this study, we investigated the effect of recombinant GLP-1-(7-36) amide (rGLP-1) on lipid absorption in the small intestine in intestinal lymph duct-cannulated rats. In addition, the effects of rGLP-1 on intestinal production of apolipoprotein (apo) B and apo A-IV, two apolipoproteins closely related to lipid absorption, were evaluated. rGLP-1 was infused through the jugular vein, and lipids were infused simultaneously through a duodenal cannula. Our results showed that infusion of rGLP-1 at 20 pmol.kg(-1).min(-1) caused a dramatic and prompt decrease in lymph flow from 2.22 +/- 0.15 (SE) ml/h at baseline (n = 6) to 1.24 +/- 0.06 ml/h at 2 h (P < 0.001). In contrast, a significant increase in lymph flow was observed in the saline (control) group: 2.19 +/- 0.20 and 3.48 +/- 0.09 ml/h at baseline and at 6 h of lipid infusion, respectively (P < 0.001). rGLP-1 also inhibited intestinal triolein absorption (P < 0.05) and lymphatic apo B and apo A-IV output (P < 0.05) but did not affect cholesterol absorption. In conclusion, rGLP-1 dramatically decreases intestinal lymph flow and reduces triglyceride absorption and apo B and apo A-IV production. These findings suggest a novel role for GLP-1 in lipid absorption.  相似文献   

13.
We studied whether physiological concentration of short-chain fatty acids (SCFAs) affects colonic transit and colonic motility in conscious rats. Intraluminal administration of SCFAs (100-200 mM) into the proximal colon significantly accelerated colonic transit. The stimulatory effect of SCFAs on colonic transit was abolished by perivagal capsaicin treatment, atropine, hexamethonium, and vagotomy, but not by guanethidine. The stimulatory effect of SCFAs on colonic transit was also abolished by intraluminal pretreatment with lidocaine and a 5-hydroxytryptamine (HT)(3) receptor antagonist. Intraluminal administration of SCFAs provoked contractions at the proximal colon, which migrated to the mid- and distal colon. SCFAs caused a significant increase in the luminal concentration of 5-HT of the vascularly isolated and luminally perfused rat colon ex vivo. It is suggested that the release of 5-HT from enterochromaffin cells in response to SCFAs stimulates 5-HT(3) receptors located on the vagal sensory fibers. The sensory information is transferred to the vagal efferent and stimulates the release of acetylcholine from the colonic myenteric plexus, resulting in muscle contraction.  相似文献   

14.
The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone (0.3 mg/kg, i.m.) accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine (0.1 mg/kg, i.m.), cecum and ascending colon transit was accelerated, while at a larger dose (1.0 mg/kg, i.m.) morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of the other opioid receptors is inferred.  相似文献   

15.
Fatty acid translocase (FAT)/CD36 is one of several putative plasma membrane long-chain fatty acid (LCFA) transport proteins; however, its role in intestinal absorption of LCFA is unknown. We hypothesized that FAT/CD36 would be differentially expressed along the longitudinal axis of the gut and during intestinal development, suggesting specificity of function. We found that intestinal mucosal FAT/CD36 mRNA levels varied by anatomic location along the longitudinal gut axis: stomach 45 +/- 7, duodenum 173 +/- 29, jejunum 238 +/- 17, ileum 117 +/- 14, and colon 9 +/- 1% (means +/- SE with 18S mRNA as control). FAT/CD36 protein levels were also higher in proximal compared with distal intestinal mucosa. Mucosal FAT/CD36 mRNA was also regulated during intestinal maturation, with a fourfold increase from neonatal to adult animals. In addition, FAT/CD36 mRNA levels and enterocyte LCFA uptake were rapidly downregulated by intraduodenal oleate infusion. These findings suggest that FAT/CD36 plays a role in the uptake of LCFA by small intestinal enterocytes. This may have important implications in understanding fatty acid absorption in human physiological and pathophysiological conditions.  相似文献   

16.
Although restraint stress accelerates colonic transit via a central corticotropin-releasing factor (CRF), the precise mechanism still remains unclear. We tested the hypothesis that restraint stress and central CRF stimulate colonic motility and transit via a vagal pathway and 5-HT(3) receptors of the proximal colon in rats. (51)Cr was injected via the catheter positioned in the proximal colon to measure colonic transit. The rats were subjected to a restraint stress for 90 min or received intracisternal injection of CRF. Ninety minutes after the administration of (51)Cr, the entire colon was removed, and the geometric center (GC) was calculated. Four force transducers were sutured on the proximal, mid, and distal colon to record colonic motility. Restraint stress accelerated colonic transit (GC of 6.7 +/- 0.4, n=6) compared with nonrestraint controls (GC of 5.1 +/- 0.2, n=6). Intracisternal injection of CRF (1.0 microg) also accelerated colonic transit (GC of 7.0 +/- 0.2, n=6) compared with saline-injected group (GC of 4.6 +/- 0.5, n=6). Restraint stress-induced acceleration of colonic transit was reduced by perivagal capsaicin treatment. Intracisternal injection of CRF antagonists (10 microg astressin) abolished restraint stress-induced acceleration of colonic transit. Stimulated colonic transit and motility induced by restraint stress and CRF were significantly reduced by the intraluminal administration of 5-HT(3) antagonist ondansetron (5 x 10(-6) M; 1 ml) into the proximal colon. Restraint stress and intracisternal injection of CRF significantly increased the luminal content of 5-HT of the proximal colon. It is suggested that restraint stress stimulates colonic motility via central CRF and peripheral 5-HT(3) receptors in conscious rats.  相似文献   

17.
The aim of this study was to investigate effects of synchronized intestinal electrical stimulation (SIES) on small intestinal motility in dogs. Seventeen dogs were equipped with a duodenal cannula for the measurement of small bowel motility using manometry; an additional cannula was equipped in six of the dogs with 1.5 m distal to the first one for the measurement of small intestinal transit. Two pairs of bipolar electrodes were implanted on the small intestinal serosa with an interval of 5 cm; glucagon was used to induce postprandial intestinal hypomotility. Eleven dogs were used for the assessment of the small intestinal contractions in both fasting and fed states. The other six dogs were used for the measurement of small intestinal transit. We found that 1) SIES induced small intestinal contractions during phase I of the migrating motor complex (MMC) (contractile index or CI: 5.2 +/- 0.6 vs. 10.3 +/- 0.7, P = 0.003); 2) in the fed state, SIES significantly improved glucagon-induced small intestinal postprandial hypomotility (CI: 3.4 +/- 0.5 vs. 6.0 +/- 0.3, P = 0.03); 3) SIES significantly accelerated small intestinal transit delayed by glucagon (70.4 +/- 3.1 vs. 44.5 +/- 3.1 min, P < 0.01); 4) there was a negative correlation between the CI and transit time (r = -0.427, P = 0.048); and 5) the excitatory effect of SIES was blocked by atropine. SIES may have a therapeutic potential for treating patients with small intestinal disorders.  相似文献   

18.
《The Journal of cell biology》1994,126(6):1547-1564
Normal, chimeric-transgenic, and transgenic mice have been used to study the axial patterns of ileal lipid-binding protein gene (Ilbp) expression during and after completion of gut morphogenesis. Ilbp is initially activated in enterocytes in bidirectional wave that expands proximally in the ileum and distally to the colon during late gestation and the first postnatal week. This activation occurs at the same time that a wave of cytodifferentiation of the gut endoderm is completing its unidirectional journey from duodenum to colon. The subsequent contraction of Ilbp's expression domain, followed by its reexpansion from the distal to proximal ileum, coincides with a critical period in gut morphogenesis (postnatal days 7-28) when its proliferative units (crypts) form, establish their final stem cell hierarchy, and then multiply through fission. The wave of reactivation is characterized by changing patterns of Ilbp expression: (a) at the proximal most boundary of the wave, villi contain a mixed population of scattered ileal lipid- binding protein (ILBP)-positive and ILBP-negative enterocytes derived from the same monoclonal crypt; (b) somewhat more distally, villi contain vertical coherent stripes of wholly ILBP-positive enterocytes derived from monoclonal crypts and adjacent, wholly ILBP-negative stripes of enterocytes emanating from other monoclonal crypts; and (c) more distally, all the enterocytes on a villus support Ilbp expression. Functional mapping studies of Ilbp's promoter in transgenic mice indicate that nucleotides -145 to +48 contain cis-acting elements sufficient to produce an appropriately directed distal-to-proximal wave of Ilbp activation in the ileum, to maintain an appropriate axial distribution of monophenotypic wholly reporter-positive villi in the distal portion of the ileum, as well as striped and speckled villi in the proximal portion of its expression domain, and to correctly support reporter production in villus-associated ileal enterocytes. Nucleotides -417 to -146 of Ilbp contain a "temporal" suppressor that delays initial ileal activation of the gene until the second postnatal week. Nucleotides -913 to -418 contain a temporal suppressor that further delays initial activation of the gene until the third to fourth postnatal week, a spatial suppressor that prohibits gene expression in the proximal quarter of the ileum and in the proximal colon, and a cell lineage suppressor that prohibits expression in goblet cells during the first two postnatal weeks.  相似文献   

19.
Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated pancreaticobiliary secretion, intestinal motility, and release of regulatory mediators. Eight healthy volunteers were intubated with an oroileal multilumen tube for continuous duodenal perfusion of essential amino acids (450 mumol/min), ileal perfusion of graded doses of lipids (0, 50 and 100 mg/min, each dose for 90-120 min), aspiration of duodenal and ileal chyme, and intestinal manometry. Venous blood samples were obtained for measurement of GLP-1 and PYY. Ileal lipid perfusion dose dependently decreased endogenously stimulated trypsin [262 +/- 59 vs. 154 +/- 42 vs. 92 +/- 20 U/min (P < 0.05)] and bile acid output [18.6 +/- 1.9 vs. 8.4 +/- 2.8 vs. 3.0 +/- 1.0 micromol/min (P < 0.05)]. Duodenal motor activity was not inhibited by either lipid dose. Trypsin and bile acid output correlated inversely with the release of GLP-1 and PYY (absolute value of R > 0.84; P < 0.05), whereas the motility index did not. Physiological postprandial ileal lipid concentrations dose dependently inhibited human digestive pancreatic protease and bile acid output, but not intestinal motor activity. Thus physiological postprandial ileal nutrient exposure may be of importance for the termination of digestive secretory responses. Ileocolonic release of GLP-1 and PYY appears to participate in mediating these effects.  相似文献   

20.
The kappa-opioid compound U-69,593 was studied in rats in vitro in binding assays to assess its selectivity at the single types of opioid sites and in vivo to assess its analgesic activity and effect on intestinal propulsion. In vitro the U-69,593 inhibition curve of [3H]-(-)-bremazocine binding suppressed at mu- and alpha-sites was biphasic and the inhibition constant (Kl) at the high-affinity site (10-18 nM) was two orders of magnitude smaller than the Kl at the low-affinity site. The Kl at mu- and alpha-sites were respectively 3.3 and 8.5 microM. Thus [3H]-(-)-bremazocine, suppressed at mu- and alpha-sites, may still bind more than one site, which U-69,593 might distinguish. In vivo U-69,593 i.p. prolonged the reaction time of rats on a 55 degrees C hot-plate and the dose of naloxone required to antagonize this effect was 40 times the dose that antagonized morphine-induced antinociception, suggesting the involvement of the kappa-receptor. In the intestinal transit test U-69,593 at doses between 0.5 and 15 mg/kg i.p. only slightly slowed intestinal transit of a charcoal meal in rats with no dose-relation; it partly but significantly antagonized morphine-induced constipation. These results suggest that the kappa-type of opioid receptor, with which U-69,593 interacts may induce analgesia, but has no appreciable role in the mechanisms of opioid-induced inhibition of intestinal transit in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号