首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tests the hypothesis that ischemic preconditioning (IP) changes fatty acid (FA)-dependent uncoupling between mitochondrial respiration and oxidative phosphorylation. We found that IP does not alter mitochondrial membrane integrity or FA levels, but enhances membrane potential decreases when FA are present, in an ATP-sensitive manner. FA hydroperoxides had equal effects in control and preconditioned mitochondria, and GTP did not abrogate the IP effect, suggesting uncoupling proteins were not involved. Conversely, thiol reductants and atractyloside, which inhibits the adenine nucleotide translocator, eliminated the differences in responses to FA. Together, our results suggest that IP leads to thiol oxidation and activation of the adenine nucleotide translocator, resulting in enhanced FA transport and mild mitochondrial uncoupling.  相似文献   

2.
The effect of the divalent cationic cyanine dye tri-S-C4(5) on oxidative phosphorylation in rat liver mitochondria was examined. The dye at about 100 n mols per mg mitochondrial protein inhibited state 3 respiration and ATP synthesis almost completely. However, it had no effect on submitochondrial particles, like other hydrophobic cations. The dye inhibited the transport of ADP into mitochondria mediated by the adenine nucleotide translocator. Thus, the inhibition of oxidative phosphorylation by the cationic dye was concluded to be due to its action on the adenine nucleotide translocator, not to its electrophoretic transfer into the inner space of mitochondria according to the inside-negative electrochemical potential.  相似文献   

3.
2,6-Diisopropylphenol, a general anesthetic, was previously reported to reduce the transmembrane electrical potential in isolated rat liver mitochondria without affecting the rate of ATP production. This effect appeared to contrast with the generally accepted chemiosmotic mechanism for oxidative phosphorylation. In this study we further examined the influence of 2,6-diisopropylphenol on the production of ATP by isolated mitochondria and we studied its effect on the permeability of the inner mitochondrial membrane to protons. In order to clarify the effects of 2,6-diisopropylphenol on mitochondrial ATP production the activities of the adenine nucleotide translocator and the ATP synthetase were evaluated. The results obtained indicate that the depression of the transmembrane electrical potential elicited by 2,6-diisopropylphenol decreased the activity of the ATP synthetase (as expected in the chemiosmotic model for energy coupling), but not that of the adenine nucleotide translocator. The decrease of the ATP synthetase activity, however, did not result in an apparent inhibition of the overall rate of ATP production in isolated mitochondria due to the rate-limiting effect of the adenine nucleotide translocator in this process. Moreover 2,6-diisopropylphenol was found to increase the permeability to protons of the inner mitochondrial membrane; this effect became more marked as the pH of the incubation medium was increased, demonstrating that it involved the dissociated form of 2,6-diisopropylphenol. These observations suggested that 2,6-diisopropylphenol affected oxidative phosphorylation by acting as a mild protonophore and that its effectiveness was limited by the low fraction of phenol dissociated at near-physiological pH.  相似文献   

4.
Modular kinetic analysis was used to characterize inhibition of adenine nucleotide translocation by palmitoyl-CoA in isolated rat-liver mitochondria. To this purpose, oxidative phosphorylation has been divided into two modules with the fraction of matrix ATP as linking intermediate. The adenine nucleotide translocator is the matrix ATP-consuming module and the remainder of oxidative phosphorylation (ATP synthesis, respiratory chain and transport of phosphates and respiratory substrate) is the matrix ATP-producing module. We found that palmitoyl-CoA inhibits ATP-consuming module (ANT) and has no effect on ATP-producing module. There were no significant differences between kinetic curves obtained with oligomycin and myxothiazol, inhibitors that have opposite effect on membrane potential, suggesting that the use of the fraction of matrix ATP as the only intermediate is a good approximation. A new method has been used to determine the fraction of ATP in the mitochondrial matrix.  相似文献   

5.
A thermodynamic control theory previously developed has been applied to mitochondrial oxidative phosphorylation with emphasis on the role of delta microH and coupling and within the paradigm of delocalized chemiosmotic coupling. The basis for the observed distribution of flux control over the participating enzymes is shown to lie in the relative magnitudes of so-called delta microH elasticity coefficients, i.e., the delta microH dependencies of the different mitochondrial processes. In particular the relatively strong delta microH dependence of mitochondrial respiration is responsible for the significant role of the adenine nucleotide translocator in the control of oxidative phosphorylation. Uncoupling decreases the control exerted by this translocator on respiration but increases that exerted on phosphorylation.  相似文献   

6.
Having confirmed that adenovirus-mediated overexpression of NH2-tau fragment lacking the first 25 aminoacids evokes a potent neurotoxic effect, sustained by protracted stimulation of NMDA receptors, in primary neuronal cultures we investigated whether and how chemically synthesized NH2-derived tau peptides, i.e. NH2-26-44 and NH2-1-25 fragments, affect mitochondrial function. We tested both fragments on each step of the processes leading to ATP synthesis via oxidative phosphorylation: i) electron flow via the respiratory chain from physiological substrates to oxygen with the activity of each individual complex of the respiratory chain investigated in some detail, ii) membrane potential generation arising from externally added succinate and iii) the activity of both the adenine nucleotide translocator and iv) ATP synthase. Oxidative phosphorylation is not affected by NH2-1-25 tau fragment, but dramatically impaired by NH2-26-44 tau fragment. Both cytochrome c oxidase and the adenine nucleotide translocator are targets of NH2-26-44 tau fragment, but adenine nucleotide translocator is the unique mitochondrial target responsible for impairment of oxidative phosphorylation by the NH2-26-44 tau fragment, which then exerts deleterious effects on cellular availability of ATP synthesized into mitochondria.  相似文献   

7.
Neoplastic transformation was found to have a marked effect on the expression of nuclear DNA (nDNA)- and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (OXPHOS) genes. Examining three pairs of human diploid fibroblasts and their SV 40-transformed counterparts revealed that mRNAs for the nuclear-encoded ATP synthase beta and the adenine nucleotide translocator (ANT) isoform 1 and 2 genes were markedly induced, whereas the mRNA for the ANT isoform 3 gene remained unchanged. The mRNA levels for the mtDNA-encoded 12 S rRNA, ND2, ATPase6+8, COIII, ND5+6, and Cytb genes were also increased, whereas the mtDNA number declined. Similar analysis of a cervical carcinoma (HeLa), fibrosarcoma (HT1080), and an Epstein-Barr virus (EBV)-transformed lymphoblastoid line (EBV-L) revealed that all three ANT isoforms were also expressed in these cells. Hence, changes in the expression of OXPHOS genes may be a common feature of transformed cells.  相似文献   

8.
The objective of this investigation is to analyze the two following problems of the regulation of mitochondrial oxidative phosphorylation: what is the extramitochondrial parameter that controls ATP production according to the cytoplasmic demands and how the control is distributed between various mitochondrial enzymes. On the basis of the data of Groen et al. (1982) it is shown that as the respiration rates ranged over 30-50% of the maximum (i.e. within the physiological region) the contribution of the adenine nucleotide translocator to the control of the ATP flux is no less than 90%, referring to the total contribution of all mitochondrial enzymes as 100%. Founding on the key role of the adenine nucleotide translocator it has been concluded that besides the extramitochondrial [ATP]/[ADP] ratio the absolute ADP concentration is another extramitochondrial signal controlling significantly the rate of oxidative phosphorylation.  相似文献   

9.
10.
The aim of this investigation was to study the effect of intramitochondrial acyl-CoA on the respiration of rabbit heart mitochondria over the whole range of stationary respiratory rates between States 4 and 3. The creatine phosphokinase system was used for stabilization of extramitochondrial adenine nucleotide concentration. It was shown that acyl-CoA depressed respiration more effectively in the intermediate range of respiration between States 4 and 3. The effect of acyl-CoA was negligible near State 4 and in State 3. These data are in line with our previous results concerning the dependence of the adenine nucleotide translocator control coefficient on the rate of mitochondrial respiration. Thus, our data suggest that long-chain acyl-CoA may regulate oxidative phosphorylation in heart mitochondria in vivo.  相似文献   

11.
12.
We found recently autoantibodies against the adenine nucleotide translocator (ANT), a carrier in the inner mitochondrial membrane, in sera of patients with myocarditis and dilated cardiomyopathy. To elucidate whether these antibodies are of pathophysiological importance, we investigated the function and expression of the adenine nucleotide translocator (ANT) in the heart muscle tissue of patients suffering from myocarditis and DCM. We found a markedly lowered transport capacity of the translocator accompanied by an elevation in total ANT protein content. The alteration in ANT protein amount is caused by an ANT isoform shift characterized by an increase in ANT 1 isoform protein associated with a decrease in ANT 2 isoform and an unchanged ANT 3 content. It could be shown that the isoform shift is not a progressive process during the disease period but an event in the early period of illness which becomes permanent.Simulating the effect of pathogenetic factors of autoimmunological diseases, we infected A/J mice with the enterovirus Cox-sackie B3 and immunized guinea pigs with myocardial ANT protein. Both treatments led to autoimmunological responds and to a lowered myocardial transport capacity of ANT, to a disturbed energy metabolism and consequently to a depression of heart function.  相似文献   

13.
Control of mitochondrial respiration   总被引:10,自引:0,他引:10  
The control theory of Kacser and Burns [in: Rate Control of Biological Processes (Davies, D.D. ed) pp. 65-104, Cambridge University Press, London, 1973] and Heinrich and Rapoport [Eur. J. Biochem. (1974) 42, 97-105] has been used to quantify the amount of control exerted by different steps on mitochondrial oxidative phosphorylation in rat-liver mitochondria. Inhibitors were used to manipulate the amount of active enzyme. The control strength of the adenine nucleotide translocator was measured by carrying out titrations with carboxyatractyloside. In state 4, the control strength of the translocator was found to be zero. As the rate of respiration was increased by adding hexokinase, the control strength of the translocator increased to a maximum value of approximately 30% at approximately 80% of state 3 respiration. In state 3, control of respiration is distributed between a number of steps, including the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase. The measured values for the distribution of control agree very well with those calculated with the aid of a model for mitochondrial oxidative phosphorylation developed by Bohnensack et al. [Biochim. Biophys. Acta (1982) 680, 271-280].  相似文献   

14.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

15.
Except for close to state 3, mitochondrial respiration has been observed to vary almost linearly with the extramitochondrial phosphorylation potential. For the understanding of the control, thermodynamics, and stoichiometries of oxidative phosphorylation, it is important if this linearity corresponds to an extension of a near-equilibrium flow-force relationship. Using three methods to determine the extramitochondrial ATP/ADP ratio, we observed that at high ATP/ADP ratios the relationship between respiratory rate and log (ATP/ADP) deviated in a sigmoidal fashion from linearity, if the amount of hexokinase present was modulated. In a titration with uncoupler, the sigmoidicity at high ATP/ADP ratios was absent. This difference between the flow-force relationships of these two experiments suggests that the sigmoidicity in the former case reflects a nonproportional flow-force relationship of the adenine nucleotide translocator. In the latter case, one measures the flow-force relationship of the redox-driven proton pumps alone, which turns out to be virtually linear. We determined the flow-force relation of the adenine nucleotide translocator for two ways of varying the force and confirmed the sigmoidicity in both cases. The implication is that the near-linearity of the flow-force relationships at intermediary respiratory rates does not correspond to an Onsager-type (near equilibrium) linearity. We discuss that this phenomenon requires the application of nonclassical forms of nonequilibrium thermodynamics and may be responsible for some of the control over oxidative phosphorylation that is exerted by the cytosolic ATP consuming processes.  相似文献   

16.
The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1–4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.  相似文献   

17.
The activity of the adenine nucleotide translocator is decreased at ischemia. Studies were undertaken to elucidate changes in the adenine nucleotide translocator by determining its content in mitochondria of ischemic rat kidney. After 60 min of ischemia, the content of the adenine nucleotide translocator amounted only to about 55%, of that measured in control mitochondria. At the same time, the flux control coefficient was increased. These changes paralled the well-known effects of ischemia: the decrease in oxidative phosphorylation and in adenine nucleotides. It is supposed that the decrease in the adenine nucleotide translocatar content accounts, at least partially, for the ischemia-induced impairment of mitochondria.  相似文献   

18.
On integrating experimental data published previously, the following picture of the mitochondrial adenine nucleotide (AdN) translocation system is being presented: 1. The AdN translocation system serves not only to transport ATP synthesized within mitochondria into the cytosol but also to transport cytosolic ATP into the mitochondria when oxidative phosphorylation is not functioning. 2. The AdN translocator is coded for by nuclear genes and the mitochondrial protein synthesis is not involved in its formation. 3. The AdN translocation system must be preserved and functioning even in cells which could dispense with oxidative phosphorylation. It assures appropriate concentrations of intramitochondrial ATP. 4. The intramitochondrial ATP is required for normal replication of mitochondrial DNA. Tis supports the view that the mitochondrion is a self-replicating semi-autonomous organelle. 5. The appropriate concentration of ATP must be present in mitochondria to make possible cell growth or multiplication. This points to a direct or indirect role of mitochondria in the control of cell proliferation.  相似文献   

19.
20.
Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (porin reconstituted in liposomes or MtCK) or the analyzed isoform (chicken sarcomeric MtCK or human ubiquitous MtCK, human recombinant porin, or purified bovine porin). Increased ionic strength reduced the binding of MtCK to porin, suggesting predominantly ionic interactions. By contrast, micromolar concentrations of Ca(2+) increased the amount of bound MtCK, indicating a physiological regulation of complex formation. No interaction of MtCK with reconstituted adenine nucleotide translocator was detectable in our experimental setup. The relevance of these findings for structure and function of mitochondrial contact sites is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号