首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several antitumor drugs including DNA intercalative and non intercalative agents induce in vitro and in vivo double-stranded DNA breaks by stabilization of a topoisomerase II-DNA complex. In order to locate cleavage sites in an actively transcribed oncogene, N417 cells, originating from a human small cell lung carcinoma and containing 45-50 copies of c-myc oncogene, were treated with mAMSA, 9 hydroxyellipticine and VM 26. The presence of DNA lesions in c-myc was investigated by Southern blot hybridization with a human c-myc probe. In addition to normal bands, DNA patterns of drug treated-cells revealed the presence of new bands most likely corresponding to topoisomerase II-mediated cleavage as these bands were not found in untreated control DNA and in DNA treated with oAMSA, a biologically inactive stereoisomer of mAMSA. Major cleavage sites induced by drugs in the N417 cell c-myc locus were located in the 5' end of the c-myc exon 1 closely to some DNAse I hypersensitive sites which are assumed to reflect an activity of the gene. Therefore our data suggest that TopoII-mediated drug activity correlates with gene activity.  相似文献   

2.
Cloning and sequencing of cDNA segments of human TOP2 gene encoding the 170 kDa form of human DNA topoisomerase II show that Arg486 of the enzyme has been mutated to a lysine in the enzyme from two human leukemia cell lines HL-60/AMSA and KBM-3/AMSA, which were independently selected for resistance to the antitumor drug amsacrine (4'-[9-acridinylamino]-methanesulfon-m-anisidide, mAMSA). Sequence identity comparisons between eukaryotic DNA topoisomerase II and bacterial gyrase (bacterial DNA topoisomerase II) indicate that the position of the common mutation observed in mAMSA-resistant human TOP2 corresponds to that of the point mutation nal-31 in the Escherichia coli gyrase B gene, which confers resistance to nalidixic acid. Because mAMSA and nalidixic acid are known to act on their respective targets by a common mechanism of trapping the covalent enzyme-DNA intermediates, these results provide strong evidence that the 170 kDa form of human DNA topoisomerase II is a major cellular target of mAMSA, and that Arg486 of this enzyme is involved in mAMSA-mediated trapping of the covalent enzyme-DNA complex.  相似文献   

3.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

4.
5.
Methods of uncoupling the DNA binding, cleavage and religation reactions of topoisomerase II were employed to investigate the influence of topoisomerase II-directed drugs on the individual steps in the enzyme's catalytic cycle. A special DNA substrate containing a major topoisomerase II interaction site, which can be cleaved by the enzyme in the absence of any concomitant religation, was used to examine the effect of topoisomerase II-directed agents upon the DNA cleavage reaction. The experiment demonstrated that the topoisomerase II targeting agent Ro 15-0216 stimulates the DNA cleavage reaction extensively, whereas the traditional topoisomerase II inhibitor, mAMSA, has only a minor effect on this reaction. Topoisomerase II trapped in the cleavage complexes can religate to the 3' hydroxyl end of another DNA strand. Using this religation assay, it was demonstrated that the major effect of mAMSA is an inhibition of the enzyme's religation reaction, whereas Ro 15-0216 has no effect on this reaction. Recently, considerable attention has been given to drugs preventing topoisomerase II from introducing DNA cleavages. In the present paper the initial non-covalent DNA binding reaction of topoisomerase II was investigated under conditions excluding enzyme-mediated DNA cleavage. This demonstrated that the anthracycline, aclarubicin, prevents topoisomerase II from performing its initial non-covalent DNA binding reaction and thereby abolishes the DNA cleavage reaction of the enzyme. The results presented here demonstrate that profound differences exist in the mode of action of different agents targeting topoisomerase II, and that the enzyme can be affected by such agents at both its DNA binding, cleavage and religation subreactions.  相似文献   

6.
Topoisomerase II (Top2) is the primary target for active anti-cancer agents. We developed an efficient approach for identifying hypersensitive Top2 mutants and isolated a panel of mutants in yeast Top2 conferring hypersensitivity to the intercalator N-[4-(9-acridinylamino)-3-methoxyphenyl]methanesulphonanilide (mAMSA). Some mutants conferred hypersensitivity to etoposide as well as mAMSA, whereas other mutants exhibited hypersensitivity only to mAMSA. Two mutants in Top2, changing Pro(473) to Leu and Gly(737) to Val, conferred extraordinary hypersensitivity to mAMSA and were chosen for further characterization. The mutant proteins were purified, and their biochemical activities were assessed. Both mutants encode enzymes that are hypersensitive to inhibition by mAMSA and other intercalating agents and exhibited elevated levels of mAMSA-induced Top2:DNA covalent complexes. While Gly(737) --> Val Top2p generated elevated levels of Top2-mediated double strand breaks in vitro, the Pro(473) --> Leu mutant protein showed only a modest increase in Top2-mediated double strand breaks but much higher levels of Top2-mediated single strand breaks. In addition, the Pro(473) --> Leu mutant protein also generated high levels of mAMSA-stabilized covalent complexes in the absence of ATP. We tested the role of single strand cleavage in cell killing with alleles of Top2 that could generate single strand breaks, but not double strand breaks. Expression in yeast of a Pro(473) --> Leu mutant that could only generate single strand breaks conferred hypersensitivity to mAMSA. These results indicate that generation of single strand breaks by Top2-targeting agents can be an important component of cell killing by Top2-targeting drugs.  相似文献   

7.
DNA topoisomerase II is believed to be the enzyme that produces the protein-associated DNA strand breaks observed in mammalian cell nuclei treated with various intercalating agents. Two intercalators--4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA, amsacrine) and 2-methyl-9-hydroxyellipticinium (2-Me-9-OH-E+)--differ in their effects on protein-associated double-strand breaks in isolated nuclei. m-AMSA stimulates their production at all concentrations, whereas 2-Me-9-OH-E+ stimulates at low concentrations and inhibits at high concentrations. We have reproduced these differential effects in experiments carried out in vitro with purified L1210 DNA topoisomerase II, and we have found that concentrations of 2-Me-9-OH-E+ above 5 microM prevent the trapping of DNA-topoisomerase II cleavable complexes irrespective of the presence of m-AMSA. It also stimulated topoisomerase II mediated DNA strand passage, again with or without inhibitory amounts of m-AMSA (this result suggests that extensive intercalation by 2-Me-9-OH-E+ destabilized the cleavable complexes). From these data, it is concluded that intercalator-induced protein-associated DNA strand breaks observed in intact eukaryotic cells and isolated nuclei are generated by DNA topoisomerase II and that intercalators can affect mammalian DNA topoisomerase II in more than one way. They can trap cleavable complexes and inhibit DNA topoisomerase II mediated DNA relaxation (m-AMSA and low concentrations of 2-Me-9-OH-E+) or destabilize cleavable complexes and stimulate DNA relaxation (high concentrations of 2-Me-9-OH-E+).  相似文献   

8.
M Sioud  P Forterre 《Biochemistry》1989,28(9):3638-3641
The fluoroquinolone ciprofloxacin, an inhibitor of eubacterial DNA gyrase, induces single- and double-stranded DNA breaks in the plasmid pGRB-1 from the halophilic archaebacterium Halobacterium GRB when the cells are treated by this drug in a magnesium-depleted medium. This reaction is prevented by a dose of novobiocin known to specifically inhibit DNA gyrase. Cleavage of pGRB-1 DNA induced by either ciprofloxacin or the antitumoral drug etoposide (VP16) produces DNA fragments of identical lengths. These results indicate that ciprofloxacin, novobiocin, and etoposide have a common target in Halobacterium GRB: an archaebacterial type II DNA topoisomerase. The similarity of DNA cleavage patterns induced by ciprofloxacin and etoposide is a new and strong argument that quinolone and epipodophyllotoxins have the same mode of interaction with the DNA-DNA topoisomerase II complexes. The plasmid pGRB-1 could be used to prescreen in the same system both antibiotics that inhibit bacterial gyrase and antitumoral drugs that inhibit eukaryotic DNA topoisomerase II.  相似文献   

9.
Bromberg KD  Burgin AB  Osheroff N 《Biochemistry》2003,42(12):3393-3398
Several important antineoplastic drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. These compounds act by two distinct mechanisms. Agents such as etoposide inhibit the ability of topoisomerase II to ligate enzyme-linked DNA breaks. Conversely, compounds such as quinolones have little effect on ligation and are believed to stimulate the forward rate of topoisomerase II-mediated DNA cleavage. The fact that there are two scissile bonds per double-stranded DNA break implies that there are two sites for drug action in every enzyme-DNA cleavage complex. However, since agents in the latter group are believed to act by locally perturbing DNA structure, it is possible that quinolone interactions at a single scissile bond are sufficient to distort both strands of the double helix and generate an enzyme-mediated double-stranded DNA break. Therefore, an oligonucleotide system was established to further define the actions of topoisomerase II-targeted drugs that stimulate the forward rate of DNA cleavage. Results indicate that the presence of the quinolone CP-115,953 at one scissile bond increased the extent of enzyme-mediated scission at the opposite scissile bond and was sufficient to stimulate the formation of a double-stranded DNA break by human topoisomerase IIalpha. These findings stand in marked contrast to those for etoposide, which must be present at both scissile bonds to stabilize a double-stranded DNA break [Bromberg, K. D., et al. (2003) J. Biol. Chem. 278, 7406-7412]. Moreover, they underscore important mechanistic differences between drugs that enhance DNA cleavage and those that inhibit ligation.  相似文献   

10.
The role of topoisomerase enzymes in the response of HeLa S3 cells to ionizing radiation was investigated. Exposure of cells to 100 Gy of X-radiation had no detectable effect either on the total cellular topoisomerase activity as measured by the relaxation of supercoiled plasmid DNA by cell sonicates or on the total cellular topoisomerase II activity as measured by plasmid DNA catenation. Total topoisomerase II activity remained constant for up to 90 min after cell irradiation. The effect of 2 drugs (caffeine and novobiocin) which inhibit topoisomerase II activity on the HeLa cell response to radiation was determined. Both drugs were found to inhibit topoisomerase II in vitro and to inhibit the recovery of nucleoid sedimentation in irradiated cells in vivo to the same extent. Topoisomerase II was inhibited by 50% by exposure to 10 mM caffeine and 0.79 mM novobiocin. At low concentrations neither drug affected the induction frequency, nor the rejoining rate, of DNA double-strand breaks. Caffeine (5 mM) inhibited the short-term recovery of cells from radiation while novobiocin (0.79 mM) had no detectable effect on the capacity of cells to recover from radiation exposure. The results indicate that topoisomerase II is not required for DNA double-strand break rejoining though it could be required for the recovery of DNA coiling in the irradiated cell. If topoisomerase II is involved at all in cell recovery from irradiation, this role does not apparently involve an ATP-dependent enzyme activity.  相似文献   

11.
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.  相似文献   

12.
A Wong  C H Huang  S T Crooke 《Biochemistry》1984,23(13):2939-2945
We have demonstrated that 4'-(9-acridinyl-amino)methanesulfon-m-anisidide (mAMSA), in the presence of Cu(II) ion, causes the breakage of plasmid pDPT275 and pBR322 superhelical form I DNA. In neutral pH, the degradative product was nicked, relaxed form II DNA, resulting from single-stranded DNA breakage. The extent of DNA breakage was both mAMSA concentration and Cu(II) concentration dependent. DNA breakage increased with increasing time of drug treatment. The mAMSA-Cu(II)-induced DNA breakage varied with pH values and also with the nature of the buffer systems. In both Tris-HCl and borate buffers the extent of DNA breakage increased with increasing pH. In Tris-HCl buffer (pH 7-9), only single-strand breaks were obtained, whereas in borate buffer (pH 9-10.5), linear form III DNA was obtained. At equivalent pH, the optimum buffer was borate. No breakage was observed at pH values below 6. The interaction of Cu(II) with mAMSA was examined by using absorption and fluorescence spectroscopies. Interaction of Cu(II) with mAMSA was characterized by a decrease in the absorption at 435 and 420 nm with a simultaneous increase at 330 nm. A highly fluorescent product was obtained upon reacting mAMSA with Cu(II), with an emission spectrum (excitation at 400 nm) showing a doublet at 430 and 450 nm and a shoulder around 480 nm. The spectral changes are also dependent similarly on the pH and the nature of buffer. Other divalent metal ions such as Co(II), Cd(II), Ni(II), and Zn(II) do not induce DNA breakage or spectral changes. The oAMSA isomer, which has no antitumor activity, is less effective in inducing DNA breakage than the mAMSA.  相似文献   

13.
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.  相似文献   

14.
Camptothecin, a cytotoxic drug, is a strong inhibitor of nucleic acid synthesis in mammalian cells and a potent inducer of strand breaks in chromosomal DNA. Neither the equilibrium dialysis nor the unwinding measurement indicates any interaction between camptothecin and purified DNA. However, camptothecin induces extensive single strand DNA breaks in reactions containing purified mammalian DNA topoisomerase I. DNA breakage in vitro is immediate and reversible. Analyses of camptothecin-induced DNA breaks show that topoisomerase I is covalently linked to the 3' end of the broken DNA. In addition, camptothecin inhibits the catalytic activity of mammalian DNA topoisomerase I. We propose that camptothecin blocks the rejoining step of the breakage-reunion reaction of mammalian DNA topoisomerase I. This blockage results in the accumulation of a cleavable complex which resembles the transient intermediate proposed for eukaryotic DNA topoisomerase I. The inhibition of nucleic acid synthesis and the induction of DNA strand breaks observed in vivo may be related to the formation of this drug-induced cleavable complex.  相似文献   

15.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

16.
17.
Quinolone antimicrobial drugs target both DNA gyrase and topoisomerase IV (Topo IV) and convert these essential enzymes into cellular poisons. Topoisomerase poisoning results in the inhibition of DNA replication and the generation of double-strand breaks. Double-strand breaks are repaired by homologous recombination. Here, we have investigated the interaction between the RuvAB branch migration complex and the Topo IV.quinolone.DNA ternary complex. A strand-displacement assay is employed to assess the helicase activity of the RuvAB complex in vitro. RuvAB-catalyzed strand displacement requires both RuvA and RuvB proteins, and it is stimulated by a 3'-non-hybridized tail. Interestingly, Topo IV.quinolone.DNA ternary complexes do not inhibit the translocation of the RuvAB complex. In fact, Topo IV.quinolone.DNA ternary complexes are reversed and displaced from the DNA upon their collisions with the RuvAB complex. These results suggest that the RuvAB branch migration complex can actively remove quinolone-induced covalent topoisomerase.DNA complexes from DNA and complete the homologous recombination process in vivo.  相似文献   

18.
Kowalska-Loth  B.  Bubko  I.  Komorowska  B.  Szumiel  I.  Staron  K. 《Molecular biology reports》1998,25(1):21-26
An in vitro system composed of nicked pBR322 DNA and purified topoisomerase I was employed to study the efficiency of the topoisomerase I-driven single-strand to double-strand DNA breaks conversion. At 1.4 × 105 topoisomerase I activity units per mg DNA about 20% single-strand nicks were converted into double-strand breaks during 30 min due to topoisomerase I action. Camptothecin inhibited the conversion. The conversion was also inhibited when the relaxing activity of the used topoisomerase I was increased by phosphorylation of the enzyme with casein kinase 2. The presented data suggest that topoisomerase I may be involved in production of double-stranded breaks in irradiated cells and that this process positively depends on the amount of topoisomerase I but not on its phosphorylation state.  相似文献   

19.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

20.
L Yang  T C Rowe  E M Nelson  L F Liu 《Cell》1985,41(1):127-132
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号