首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low molecular weight (approximately 16,000), early protein is characterized as the product of the essential T4 head assembly gene 31. This gene is known to be required to allow formation of any ordered head structure from the major T4 capsid protein, P23 (Laemmli, U.K., Beguin, F., and Gujer-Kellenberger, G. (1970) J. Mol. Biol. 47, 69-85). In wild type infection P31 synthesis ceases at late times; in contrast, P31 is overproduced in certain early or regulatory T4 mutant infections, particularly gene 55 mutant infections. P31 was purified preparatively from Escherichia coli infected with the latter mutant, but could only be obtained for the most part in modified form, possibly due to unusual sensitivity to a proteolytic activity. P31 is not cleaved in vivo during normal head assembly, nor does it become a part of the mature head or any ordered prehead structure as determined by an immunological assay using antiserum prepared against the purified protein. However P31 does appear to become a part of the unordered P23 aggregates (lumps) which accumulate when ordered P23 assembly is prevented. We cound find no evidence for P31 association with T4 DNA or the host membrane. Our experiments favor the hypothesis that P31 directly affects the aggregation state and solubility properties of P23.  相似文献   

2.
Isolation and characterization of bacteriophage T4 mutant preheads.   总被引:12,自引:8,他引:4       下载免费PDF全文
To determine the function of individual gene products in the assembly and maturation of the T4 prehead, we have isolated and characterized aberrant preheads produced by mutations in three of the T4 head genes. Mutants in gene 21, which codes for the T4 maturation proteases, produce rather stable preheads whose morphology and protein composition are consistent with a wild-type prehead blocked in the maturation cleavages. Mutants in gene 24 produce similar structures which are unstable because they have gaps at all of their icosahedral vertices except the membrane attachment site. In addition, greatly elongated "giant preheads" are produced, suggesting that in the absence of P24 at the vertices, the distal cap of the prehead is unstable, allowing abnormal elongation of broth the prehead core and its shell. Vertex completion by P24 is required to allow the maturation cleavages to occur, and 24- preheads can be matured to capsids in vitro by the addition of P24. Preheads produced by a temperature-sensitive mutant in gene 23 are deficient in core proteins. We show that the shell of these preheads has the expanded lattice characteristic of the mature capsid as well as the binding sites for the proteins hoc and soc, even though none of the maturation cleavage takes place. We also show that 21- preheads composed of wild-type P23 can be expanded in vitro without cleavage.  相似文献   

3.
A protein mixture which is derived from bacteriophage T4 preheads formed in vivo contains all the important prehead proteins: i.e. protein P23, which forms the icosahedral prehead shell; the core proteins P22 and internal protein III; and two quantitatively minor proteins, P24 and P20. Conditions are described under which these proteins assemble in vitro into structures that (1) resemble preheads when visualized by electron microscopy, (2) contain all prehead proteins, and (3) have a similar length and diameter as preheads formed in vivo. It is concluded that prehead-like structures can be assembled in vitro, and that the mechanism that determines the length and diameter of the T4 prehead is active in our in vitro system. Evidence is presented that the core proteins play an important role in specifying the prehead diameter. The result of assembly experiments after partial fractionation of the protein mixture by gel filtration suggests that P20 plays a key role in the assembly of prehead-like structures in vitro, whereas P24 is not required. A possible mechanism by which P20 governs tha assembly of P23 and the core proteins is discussed.  相似文献   

4.
A new bacteriophage T4 gene has been identified and located between genes 20 and 21. This gene codes for PIP, a component of the prehead core and precursor to one of the two species of small, acidic peptides found inside the mature phage head. We have determined the DNA sequence of the gene. Both the DNA sequence and the amino acid sequence derived from it are unusual, and between them explain why suppressor-sensitive mutations in the gene have not been found using classical mutagenesis. The codon usage in this gene is highly non-random. In the accompanying paper we show that PIP is essential for T4 growth and assign its gene a number. 67, to indicate that fact.  相似文献   

5.
We have obtained frameshift mutations of the bacteriophage T4 gene 67 by manipulating restriction cleavage sites within the gene cloned onto small plasmids. When these mutated genes were recombined back into the T4 genome the resulting phages were inviable. They could only be propagated by complementation in strains carrying a cloned, non-mutated copy of the gene on a plasmid. These experiments demonstrate that gene 67 is essential for T4 growth. Electron microscopy of bacteria infected with 67? phages revealed that phage head morphogenesis was blocked at an early stage and particles resembling abnormal preheads were found in large numbers. The gene 67 product, PIP, is therefore essential for correct prehead assembly.  相似文献   

6.
Small angle X-ray scattering was performed on unprocessed and processed preheads, intermediates in the morphogenesis of bacteriophage λ heads. Unprocessed preheads possess an internal structure (scaffold), necessary for efficient assembly of closed shells. Processed preheads, formed after removal of the scaffold, are able to pack and cut the viral DNA in vitro. Our data show that the scaffold fills out the inside of the shell in an almost (but not completely) homogeneous fashion; structures of the scaffold with the bulk of the mass in a small core inside the shell can be excluded. Unprocessed preheads are larger than processed ones. A change in shell architecture takes place upon transition from unprocessed to processed prehead; the shell becomes roughened up. Shrinking of the shell as well as roughening up can be triggered by accidental partial degradation of the scaffold. The lattice constant of type A polyheads is in agreement with the lattice constant derived from our icosahedral models of the shell, indicating a close relationship between processed preheads and type A polyheads. This observation, together with the type of subunit clustering found, leads us to propose a simple model for the interaction of prehead shell and protein pD, which stabilizes phage DNA after packaging.  相似文献   

7.
The relationship between HCV core protein (HCcAg) processing and the structural composition and morphogenesis of nucleocapsid-like particles (NLPs) produced in Pichia pastoris cells was studied. At early stages of heterologous expression, data suggest that HCcAg (in the P21 form) was transported soon after its synthesis in the cytoplasm into the nucleus. HCcAg assembly into nucleocapsid-like particles with 20-30 nm in diameter took place primary in the cell nucleus. However, at later stages, when P21 and P23 forms were co-detected, data suggest that new assembly of nucleocapsid particles containing P21 possibly occurs at ER membranes and in the cytoplasm. This is the first report showing that structured HCV NLPs composed of P21 core protein assemble primary in the nucleus of P. pastoris yeast.  相似文献   

8.
It has previously been shown that the product of gene 22 (P22) disappears completely from lysates of T4-infected bacteria during head formation and is not found in the finished phage. We show here that P22, as part of a phage head precursor, is subject to proteolysis in vivo. The only identifiable surviving fragments of this proteolysis may be the internal peptides, which are found inside the finished phage head.We further show that in vitro, head-defective lysates contain a protease activity highly specific for P22. The activity is dependent on the presence of wild-type gene 21 protein (P21). The protease is itself inactivated during the protein cleavages that accomplish capsid formation. The proteolytic activity is found associated with the defective heads produced by temperature-sensitive mutants in gene 23, but not in finished normal capsids.We have characterized this P21-dependent protease activity as it is exhibited in vitro.  相似文献   

9.
10.
The maturation of the head of bacteriophage T4 requires a cleavage of the major capsid protein subunit, P23, and results in a transformation of the unstable prehead shell to the chemically resistant shell of the mature virion. We have studied this transformation by comparing class I and class III polyheads, which have P23 lattices which correspond to the prehead and mature head, respectively. The inner and outer surface topographies of these structures were determined from optically filtered images of freeze-dried and shadowed preparations. Individual antigenic sites were localized on the polyhead surfaces by labelling them with Fab fragments obtained from antisera raised against polyheads and against sheets composed of a fragment of the P23 molecule. We find that the transformation involves a structural change in the surface lattice which eliminates protrusions on the inside surface and produces new protrusions on the outer surface. Changes in antigenicity include at least one site which disappears from the outer surface, the unmasking of a site which appears on the outer surface, and the movement of at least one site from the inside surface to the outside during the transformation. We discuss the mechanism of the transformation in terms of the changes in tertiary and quaternary structure of the subunits required to account for the observed changes in the polyhead structure and antigenicity.  相似文献   

11.
The enveloped dsRNA bacteriophages phi6 and phi8 are the two most distantly related members of the Cystoviridae family. Their structure and function are similar to that of the Reoviridae but their assembly can be conveniently studied in vitro. Electron cryomicroscopy and three-dimensional icosahedral reconstruction were used to determine the structures of the phi6 virion (14 A resolution), phi8 virion (18 A resolution), and phi8 core (8.5 A resolution). Spikes protrude 2 nm from the membrane bilayer in phi6 and 7 nm in phi8. In the phi6 nucleocapsid, 600 copies of P8 and 72 copies of P4 interact with the membrane, whereas in phi8 it is only P4 and 60 copies of a minor protein. The major polymerase complex protein P1 forms a dodecahedral shell from 60 asymmetric dimers in both viruses, but the alpha-helical fold has apparently diverged. These structural differences reflect the different host ranges and entry and assembly mechanisms of the two viruses.  相似文献   

12.
We have isolated and characterized two types of particles produced in comparable amounts by mutants in gene 17: the empty large particle and the empty small particle. Dimensions, morphology, stability, and protein composition of the empty large particle are very similar to those of the capsids or empty heads of mature phage. The other type of particle (empty small particle) is very similar in dimensions and stability to the prehead, but differs in that it is composed of processed proteins (gp23, gp24, IpIII). Structural analysis has shown that the protein subunits of the empty small particles are arranged in an unexpanded type of lattice (11.2 to 11.3 nm), whereas the empty large particles have an expanded lattice (13 nm). The characterization of the empty small particle as being composed of cleaved proteins, but still unexpanded, shows that the expansion of the T4 head shell is not necessarily linked to the cleavage of the structural proteins.  相似文献   

13.
Certain core and membrane proteins of vaccinia virus undergo proteolytic cleavage at consensus AG/X sites. The processing of core proteins is coupled to morphogenesis and is inhibited by the drug rifampin, whereas processing of the A17 membrane protein occurs at an earlier stage of assembly and is unaffected by the drug. A temperature-sensitive mutant with a lesion in the I7L gene exhibits blocks in morphogenesis and in cleavage of core proteins. We found that the mutant also failed to cleave the A17 membrane protein. To further investigate the role of the putative I7 protease, we constructed a conditional lethal mutant in which the I7L gene was regulated by the Escherichia coli lac repressor. In the absence of an inducer, the synthesis of I7 was repressed, proteolytic processing of the A17 membrane protein and the L4 core protein was inhibited, and virus morphogenesis was blocked. Under these conditions, expression of the wild-type I7 protein in trans restored protein processing. In contrast, rescue did not occur when the putative protease active site residue histidine 241 or cysteine 328 of I7 was converted to alanine. The mutation of an authentic AG/A and an alternative AG/S motif of L4 prevented substrate cleavage. Similarly, when AG/X sites of A17 were mutated, I7-induced cleavages at the N and C termini failed to occur. In conclusion, we provide evidence that I7 is a viral protease that is required for AG/X-specific cleavages of viral membrane and core proteins, which occur at early and late stages of virus assembly, respectively.  相似文献   

14.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

15.
In addition to NS3 protease, the NS4A protein is required for efficient cleavage of the nonstructural protein region of the hepatitis C virus polyprotein. To investigate the function and the sequence of NS4A required for the enhancement of NS3 protease activity, we developed an in vitro NS3 protease assay system consisting of three purified viral elements: (i) a recombinant NS3 protease which was expressed in Escherichia coli as a maltose-binding protein-NS3 fusion protein (MBP-NS3), (ii) synthetic NS4A fragments, and (iii) a synthetic peptide substrate which mimics the NS5A/5B junction. We showed that the NS3 protease activity of MBP-NS3 was enhanced in a dose-dependent manner by 4A18-40, which is a peptide composed of amino acid residues 18 to 40 of NS4A. The optimal activity was observed at a 10-fold molar excess of 4A18-40 over MBP-NS3. The coefficient for proteolytic efficiency, kcat/Km, of NS3 protease was increased by about 40 times by the addition of a 10-fold molar excess of 4A18-40. Using a series of truncations of 4A18-40, we estimated that amino acid residues 22 to 31 in NS4A (SVVIVGRIIL) constituted the core sequence for the effector activity. Single-substitution experiments with 4A21-34, a peptide composed of amino acid residues 21 to 34 of NS4A, suggested the importance of several residues (Val-23, Ile-25, Gly-27, Arg-28, Ile-29, and Leu-31) for its activity. In addition, we found that some single-amino-acid substitutions in 4A21-34 were able to inhibit the enhancement of NS3 protease activity by 4A18-40. This approach has potential as a novel strategy for inhibiting the NS3 protease activity important for hepatitis C virus proliferation.  相似文献   

16.
The final steps in the production of the type C retroviruses include assembly of the viral core particle and release of virions from the surface of the infected cell. The core proteins are translated as part of one of two precursors, Gag and Gag/Pol, which are cleaved by a virally encoded protease. We examined the interaction between the processing of the human immunodeficiency virus type 1 Gag precursor and the membrane-based assembly and budding of virions. Our results indicate that cleavage by the viral protease is initiated at the membrane of the infected cell during virus release and that protease activity is required for virion release to occur with maximum efficiency.  相似文献   

17.
The hepatitis C virus (HCV) is a flavivirus replicating in the cytoplasm of infected cells. The HCV genome is a single-stranded RNA encoding a polyprotein that is cleaved by cellular and viral proteases into 10 different products. While the structural proteins core protein, envelope protein 1 (E1) and E2 build up the virus particle, most nonstructural (NS) proteins are required for RNA replication. One of the least studied proteins is NS2, which is composed of a C-terminal cytosolic protease domain and a highly hydrophobic N-terminal domain. It is assumed that the latter is composed of three trans-membrane segments (TMS) that tightly attach NS2 to intracellular membranes. Taking advantage of a system to study HCV assembly in a hepatoma cell line, in this study we performed a detailed characterization of NS2 with respect to its role for virus particle assembly. In agreement with an earlier report ( Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J., and Rice, C. M. (2007) J. Virol. 81, 8374-8383 ), we demonstrate that the protease domain, but not its enzymatic activity, is required for infectious virus production. We also show that serine residue 168 in NS2, implicated in the phosphorylation and stability of this protein, is dispensable for virion formation. In addition, we determined the NMR structure of the first TMS of NS2 and show that the N-terminal segment (amino acids 3-11) forms a putative flexible helical element connected to a stable alpha-helix (amino acids 12-21) that includes an absolutely conserved helix side in genotype 1b. By using this structure as well as the amino acid conservation as a guide for a functional study, we determined the contribution of individual amino acid residues in TMS1 for HCV assembly. We identified several residues that are critical for virion formation, most notably a central glycine residue at position 10 of TMS1. Finally, we demonstrate that mutations in NS2 blocking HCV assembly can be rescued by trans-complementation.  相似文献   

18.
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.  相似文献   

19.
Protein-disulfide isomerase (PDI) is a catalyst of folding of disulfide-bonded proteins and also a multifunctional polypeptide that acts as the beta-subunit in the prolyl 4-hydroxylase alpha(2)beta(2)-tetramer (P4H) and the microsomal triglyceride transfer protein alphabeta-dimer. The principal peptide-binding site of PDI is located in the b' domain, but all domains contribute to the binding of misfolded proteins. Mutations in the C-terminal part of the a' domain have significant effects on the assembly of the P4H tetramer and other functions of PDI. In this study we have addressed the question of whether these mutations in the C-terminal part of the a' domain, which affect P4H assembly, also affect peptide binding to PDI. We observed a strong correlation between P4H assembly competence and peptide binding; mutants of PDI that failed to form a functional P4H tetramer were also inactive in peptide binding. However, there was also a correlation between inactivity in these assays and indicators of conformational disruption, such as protease sensitivity. Peptide binding activity could be restored in inactive, protease-sensitive mutants by selective proteolytic removal of the mutated a' domain. Hence we propose that structural changes in the a' domain indirectly affect peptide binding to the b' domain.  相似文献   

20.
Secretion of fully folded extracellular proteins across the outer membrane of Gram-negative bacteria is mainly assisted by the ATP-dependent type II secretion system (T2SS). Depending on species, 12-15 proteins are usually required for the function of T2SS by forming a trans-envelope multiprotein secretion complex. Here we report crystal structures of an essential component of the Xanthomonas campestris T2SS, the 21-kDa N-terminal domain of cytosolic secretion ATPase XpsE (XpsEN), in two conformational states. By mediating interaction between XpsE and the cytoplasmic membrane protein XpsL, XpsEN anchors XpsE to the membrane-associated secretion complex to allow the coupling between ATP utilization and exoprotein secretion. The structure of XpsEN observed in crystal form P4(3)2(1)2 is composed of a 90-residue alpha/beta sandwich core domain capped by a 62-residue N-terminal helical region. The core domain exhibits structural similarity with the NifU-like domain, suggesting that XpsE(N) may be involved in the regulation of XpsE ATPase activity. Surprisingly, although a similar core domain structure was observed in crystal form I4(1)22, the N-terminal 36 residues of the helical region undergo a large structural rearrangement. Deletion analysis indicates that these residues are required for exoprotein secretion by mediating the XpsE/XpsL interaction. Site-directed mutagenesis study further suggests the more compact conformation observed in the P4(3)2(1)2 crystal likely represents the XpsL binding-competent state. Based on these findings, we speculate that XpsE might function in T2SS by cycling between two conformational states. As a closely related protein to XpsE, secretion ATPase PilB may function similarly in the type IV pilus assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号