首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic–lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor® 742 as oil and Tween®/Span® or Cremophor®/Span® as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween®/Span® in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor®/Span® blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor® RH40/Span® 80 onto Aerosil® 200 or Aerosil® R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30–50% w/w) of Aerosil® 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder.  相似文献   

2.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

3.
The aim of this work was to develop a methodology for rapid determination of the critical hydrophilic-lipophilic balance (HLB) value of lipophilic fractions of emulsions. The emulsions were prepared by the spontaneous emulsification process with HLB value from 4.3 to 16.7. The preparations were stored at 2 different temperatures (25°C and 4°C) and their physicochemical behavior was evaluated by the micro-emultocrit technique and the long-term stability study. The experimental data show a reverse relationship between HLB values of the surfactant mixtures and emulsion stability. A close correlation between the results for both stability procedures was observed, suggesting the use of micro-emultocrit to predict stabilities of such systems. In addition, it was found that the critical HLB of the Mygliol 812 was 15.367. Published: March 10, 2006  相似文献   

4.
Greenhouse experiments were conducted on various crops (cucumber, tomato, eggplant, green bean) to ascertain the effects of Break-thru® (polyether-polymethylsiloxane-copolymer, a silicone surfactant) and an oil emulsion, on Beauveria bassiana (Balsamo) Vuillemin (Bb) applications for the control of the two spotted spider mite, Tetranychus urticae Koch. The objectives were to compare a) the efficacy of Bb control when applied in aqueous Break-thru® or an oil emulsion; b) the effects of various concentrations of Bb conidia, as affected by each surfactant; and c) the effects of Break-thru® on the activity of the fungus. Conidia were suspended either in an aqueous Break-thru® or an emulsifiable formulation at different conidial concentrations (1.05 × 106, 2.1 × 106 and 4.2 × 106 conidia ml?1) and sprayed onto leaves 2 weeks after artificial pest inoculation. Two sprays were performed, with an interval of one week from one spray to another, and T. urticae population counts (both motile and egg stages) were made on plant leaves 7 days after each spray. Bb conidia in Break-thru® were more efficacious than conidia in emulsifiable formulation. With the highest rate of conidia (4.2 × 106 conidia ml?1), mortality of adult mites ranged from 60 ± 4.2 (mean ± SE) to 85.7 ± 4.3% in the Break-thru® suspension and 39.4 ± 7 to 61.3 ± 6% in the oil emulsion. Leaf damage index was also substantially reduced from 70% in the unsprayed control to 40% by the application of Bb conidia at the highest rate with Break-thru®. Break-thru® can be combined with Bb in the integrated management of T. urticae and Isolate R444 is a promising candidate for the control of the pest.  相似文献   

5.
Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, Smix, and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.  相似文献   

6.
The influence of oil type on the ability of excipient emulsions to improve the solubility, stability, and bioaccessibility of curcumin was examined. Oil-in-water emulsions were prepared using coconut, sunflower, corn, flaxseed, or fish oils. These excipient emulsions were then mixed with powdered curcumin and incubated at 30 or 100 °C. For all oils, more curcumin was transferred from powder to excipient emulsion at 100 °C (190–200 μg/mL) than at 30 °C (30–36 μg/mL), which was attributed to increased curcumin solubility with temperature. Oil type influenced the stability and bioaccessibility of curcumin when excipient emulsions were exposed to simulated gastrointestinal tract conditions, which was attributed to differences in the molecular composition and physicochemical properties of the oils. Overall, the use of fish oil led to the highest effective curcumin bioavailability (38 %). This study provides valuable information for optimizing excipient emulsions to increase curcumin bioavailability in food, supplement, or pharmaceutical applications.  相似文献   

7.
Three oligo-raker species (≤19 rakers on the first gill arch) of the genus Melamphaes have been considered. A new species, M. papavereus, out of the group “M. typhlops” has been described from the Bay of Bengal of the Indian Ocean. M. simus and M. hubbsi out of the group “M. simus” have been revised. M. simus inhabits all oceans between 40° N and 40° S. M. hubbsi has been known from single specimens caught in the central part of the South Atlantic between 11° and 19° S.  相似文献   

8.
The essential oil from Amyris balsamifera (Rutaceae) and elemol, a principal constituent of the essential oil of Osage orange, Maclura pomifera (Moraceae) were evaluated in in vitro and in vivo laboratory bioassays for repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis, and the lone star tick, Amblyomma americanum. Both bioassays took advantage of the tendency of these host-seeking ticks to climb slender vertical surfaces. In one bioassay, the central portion of a vertical strip of filter paper was treated with test solution and ticks placed or allowed to crawl onto the untreated lower portion. In the other bioassay, a strip of organdy cloth treated with test solution was doubly wrapped (treatment on outer layer) around the middle phalanx of a forefinger and ticks released on the fingertip. Both amyris oil and elemol were repellent to both species of ticks. Elemol did not differ significantly in effectiveness against A. americanum from the widely used repellent deet. At 2 and 4 h after application to filter paper, 827 μg amyris oil/cm2 paper repelled 80 and 55%, respectively, of A. americanum nymphs. Ixodes scapularis was repelled by lower concentrations of amyris oil and elemol than A. americanum.  相似文献   

9.
Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emulsions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emulsions became smaller as the chain length of the TAG increased. For a given oil, emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsions. For the tricaprylin (C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emulsions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension is inversely proportional to the initial droplet size of the emulsion.  相似文献   

10.
BioUD ® with the active ingredient 2-undecanone originally derived from wild tomato plants is a new repellent recently registered by the US EPA. Repellent efficacy of BioUD ® (7.75% 2-undecanone) and DEET (98.11%) was examined in the laboratory using a choice test between repellent-treated and control filter paper surfaces for Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. BioUD ® provided greater repellency against A. americanum and I. scapularis than DEET. No difference was found between BioUD ® and DEET against D. variabilis. In head-to-head assays between BioUD ® and DEET, undiluted and 50% dilutions of BioUD® were more repellent than undiluted DEET against all three species tested. Similarly, a 25% dilution of BioUD® was more repellent than DEET against A. americanum while no difference in mean percentage repellency was found between a 25% dilution of BioUD® and DEET against I. scapularis. Based on regression analysis, the concentration of BioUD® required for equivalent repellency to 98.11% DEET was 39.5% for D. variabilis and 29.7% for I. scapularis. A log-probit model could not be constructed for A. americanum from the dosages tested. Based on filter paper head-to-head assays, BioUD® is at least 2–4 times more active as a repellent than DEET against three species of ixodid ticks under the conditions of our laboratory bioassays.  相似文献   

11.
The use of bacterial cell or biocatalyst for industrial synthetic chemistry is on the way of significant growth since the biocatalyst requires low energy input compared to the chemical synthesis and can be considered as a green technology. However, majority of natural bacterial cell surface is hydrophilic which allows poor access to the hydrophobic substrate or product. In this study, Escherichia coli (E. coli) as a representative of hydrophilic bacterial cells were accumulated at the oil–water interface after association with chitosan at a concentration range of 0.75–750 mg/L. After association with negatively charged E coli having a ζ potential of ?19.9 mV, a neutralization of positively charged chitosan occurred as evidenced by an increase in the ζ potential value of the mixtures with increasing chitosan concentration up to +3.5 mV at 750 mg/L chitosan. Both emulsification index and droplet size analysis revealed that chitosan-E. coli system is an excellent emulsion stabilizer to date because the threshold concentration was as low as 7.5 mg/L or 0.00075 % w/v. A dramatic increase in the surface hydrophobicity of the E. coli as evidenced by an increase in contact angle from 19 to 88° with increasing chitosan concentration from 0 to 750 mg/L, respectively, resulted in an increase in the stability of oil-in-water emulsions stabilized by chitosan-E. coli system. The emulsion was highly stable even the emulsification was performed under 20 % salt condition, or temperature ranged between 20 and 50 °C. Emulsification was failed when the oil volume fraction was higher than 0.5, indicating that no phase inversion occurred. The basic investigation presented in this study is a crucial platform for its application in biocatalyst industry and bioremediation of oil spill.  相似文献   

12.
13.
Predation is a strong driver of population dynamics and community structure and it is essential to reliably quantify and predict predation impacts on prey populations in a changing thermal landscape. Here, we used comparative functional response analyses to assess how predator-prey interactions between dogfish and invertebrate prey change under different warming scenarios. The Functional Response Type, attack rate, handling time and maximum feeding rate estimates were calculated for Scyliorhinus canicula preying upon Echinogammarus marinus under temperatures of 11.3 °C and 16.3 °C, which represent both the potential daily variation and predicted higher summer temperatures within Strangford Lough, N. Ireland. A two x two design of “Predator Acclimated”, “Prey Acclimated”, “Both Acclimated”, and “Both Unacclimated” was implemented to test functional responses to temperature rise. Attack rate was higher at 11.3 °C than at 16.3 °C, but handling time was lower and maximum feeding rates were higher at 16.3 °C. Non-acclimated predators had similar maximum feeding rate towards non-acclimated and acclimated prey, whereas acclimated predators had significantly higher maximum feeding rates towards acclimated prey as compared to non-acclimated prey. Results suggests that the predator attack rate is decreased by increasing temperature but when both predator and prey are acclimated the shorter handling times considerably increase predator impact. The functional response of the fish changed from Type II to Type III with an increase in temperature, except when only the prey were acclimated. This change from population destabilizing Type II to more stabilizing Type III could confer protection to prey at low densities but increase the maximum feeding rate by Scyliorhinus canicula in the future. However, predator movement between different thermal regimes may maintain a Type II response, albeit with a lower maximum feeding rate. This has implications for the way the increasing population Scyliorhinus canicula in the Irish Sea may exploit valuable fisheries stocks in the future.  相似文献   

14.
Two species, M. danae Ebeling and M. pumilis Ebeling, belonging to the species group “M. simus” are described in the final part of the revision of oligo-raker species of the genus Melamphaes (Melamphaidae) (≤19 gill rakers on the first gill arch). The species M. danae is distributed in the Indian and Pacific oceans between 30° N and 30° S. In the Pacific Ocean, it is known up to 112° W. The species M. pumilis is distributed in the North Atlantic between 17° and 45° N, and the main catches have been conducted in the western part of the ocean. In the eastern part of the ocean, the catches are registered up to 28° W. A key for the identification of 21 oligo-raker species of the genus Melamphaes is presented.  相似文献   

15.
Erianthus arundinaceus, a member of the Saccharum complex, is of interest as a potential resource for sugarcane improvement and as a bioenergy crop. Genetic analyses of germplasm collections of E. arundinaceus are being used increasingly. To expand the genomic resources in E. arundinaceus, we aimed at developing simple sequence repeat markers. Using pyrosequencing on the 454 GS FLX system, we sequenced genomic DNA from “JW630” collected in Japan. A total of 1682 candidate loci were used to design the primers, and 1234 primer pairs amplified fragments of the expected size in the primer screening with three wild E. arundinaceus accessions (JW630, “JW4,” and “IJ76-349”). The efficiency of genotyping was validated with a subset of 174 primer pairs and 8 E. arundinaceus accessions. Of these primer pairs, 171 amplified fragments in all accessions tested and 162 detected polymorphic loci. The average values of genetic parameters were estimated as 0.30 (range, 0.09–0.49) for polymorphic information content, 1.65 (0.00–5.87) for marker index, and 2.78 (0.00–8.75) for resolving power. Using these parameters, we selected 61 primer pairs with large discriminatory power for the analyzed loci. Of the 174 primer pairs, 45 (25.9%) were also applicable to Saccharum and 33 (19.0%) to Miscanthus species. These markers would provide a valuable tool for estimating genetic diversity and constructing linkage maps in E. arundinaceus, which would be useful for genetic study and breeding.  相似文献   

16.
干姜挥发油纳米乳的制备与表征   总被引:1,自引:1,他引:0  
祖元刚  苏鹭  赵修华  王化  张琳 《植物研究》2010,30(5):637-640
为提高干姜挥发油的水溶性及在制剂过程中的稳定性,尝试将干姜挥发油制备成纳米乳载药形式,并对其进行表征。本文将提取的干姜挥发油进行成分分析并测定HLB值,通过处方筛选确定乳剂配比,并对所得干姜挥发油纳米乳的类型、粒径分布、表面电位及稳定性进行表征。经实验测得干姜中含挥发油2.1%,为淡黄色或黄色液体,HLB值为8,以吐温-80和司盘-80为表面活性剂,乳剂的最佳体积配比为油∶乳化剂∶水=6∶1∶13,激光粒度仪测得平均粒径为41.4 nm,表面电位为-10.31±1.51 mv,离心稳定常数为21.83%。此方法所得干姜挥发油纳米乳稳定性好,在水中分散性能好、稳定,可有效减少挥发油的损失。  相似文献   

17.
The essential oil from the leaves of Lippia gracilis was investigated for fumigant and residual activity against Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). The results were compared to eugenol, Ortus® and Azamax®, as positive controls. Gas chromatography (GC) and GC/mass spectrometry analysis enabled the identification of 28 compounds, accounting for 99.1?±?0.6% of the essential oil. The major constituents were carvacrol (61%), p-cymene (11%) and thymol (11%). Mites were more susceptible to the oil in fumigant tests than in residual tests. Among the components, thymol and β-caryophyllene had the greatest fumigant and residual toxicity against T. urticae, respectively. The role of selected constituents (carvacrol, p-cymene, thymol, limonene, β-pinene, 1,8-cineole, terpinolene and β-caryophyllene) in the acaricidal properties of the L. gracilis essential oil is also discussed. Fumigant and residual effects of Lippia oil were more selective than eugenol with regard to a natural enemy of T. urticae, Neoseiulus californicus. Experiments under greenhouse conditions demonstrated greater toxicity of the Lippia oil in comparison to the positive control at 24, 48 and 72 h after treatment. The results suggest that Lippia oil is a good candidate for the formulation of a botanical acaricide for the integrated management of T. urticae.  相似文献   

18.
The main objective of this work was to investigate the electrostatic interaction between lysolecithin and chitosan in two-layer tuna oil-in-water emulsions using nuclear magnetic resonance (NMR) spectroscopy. The influence of chitosan concentration on the stability and properties of these emulsions was also evaluated. The 5 wt% tuna oil one-layer emulsion (lysolecithin-stabilized oil droplets without chitosan) and two-layer emulsions (lysolecithin-chitosan stabilized oil droplets) containing 5 wt% tuna oil, 1 wt% lysolecithin and various chitosan concentrations (0.025–0.40 wt%) were prepared. The one-dimensional (1D) 31P and 1H NMR spectra of emulsions were then recorded at 25 °C. The results showed that addition of chitosan affected the stability and properties of lysolecithin-stabilized one-layer emulsions. The 31P NMR peak of the choline head group on lysolecithin molecules disappeared when chitosan was added at concentrations above neutralization concentration (> 0.05 wt%). The 1H NMR peak intensity monitoring free amino groups (?NH 3 +) of chitosan showed a strong positive linear relationship to the chitosan concentration with a high correlation coefficient (R2 ≈ 0.99). This 1H NMR peak in emulsions could not be detected for chitosan in emulsions lower than saturation concentration (< 0.15 wt%). These phenomena indicate an electrostatic interaction between lysolecithin and chitosan at droplet surface in emulsion and were consistent with the results from zeta-potential measurements. The T 2* relaxation time of the choline head group (N-(CH 3)3) signal of lysolecithin also confirmed that lysolecithin-chitosan electrostatic interaction occurs at the surface of oil droplets in two-layer emulsions. The results suggest that NMR spectroscopy can be used as an alternative method for monitoring the electrostatic interaction between surfactant and oppositely charged electrolytes or biopolymers in two-layer emulsions.  相似文献   

19.
Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50?±?0.14 nm and a polydispersity index of 0.167?±?0.006. This system was able to entrap AmB up to 2 mg mL?1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system’s thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.  相似文献   

20.
The soybean looper Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae) is known as an important pest of leguminous plants worldwide. In Brazil, this pest species is gaining importance to producers of the common bean Phaseolus vulgaris L. (Fabaceae) because it limits field production of the crop. Chemical control is still the primary method of insect control. However, due to the possible harmful effects of pesticides to humans and the environment, alternative and less aggressive practices are being investigated. For this reason, the use of resistant plant genotypes represents a valuable tool in insect control. This study evaluated the biological aspects of larvae of C. includens confined to 14 bean genotypes under laboratory conditions (26 ± 2°C; 65 ± 10% RH; photoperiod of 14 h L:10 h D). The duration of the instars, total duration of the larval phase, consumption while in the larval phase, weight of the fifth instar larvae, larval viability, duration of the pre-pupal and pupal phases, pupal weight, pupal viability, pupal deformity, caterpillar-to-adult cycle, duration of the pre-oviposition and oviposition periods, and total number of viable eggs per female were evaluated. The genotypes “IAC Boreal,” “IAC Harmonia,” and “IAC Formoso” expressed antibiosis, prolonging the caterpillar-to-adult cycle and reducing the larval viability; however, each of these genotypes also experienced high leaf consumption. “IAC Jabola” expressed moderate levels of antibiosis and/or antixenosis (feeding), while the genotype “BRS Horizonte” expressed antixenosis (feeding). The data obtained with IAC Boreal, IAC Harmonia, IAC Formoso, IAC Jabola, and BRS Horizonte are promising and may help with the improvement of programs aimed at managing C. includens damage to this leguminous agricultural crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号