首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD+ as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K+, NH4+, dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag+, Hg2+, Cu2+, and phenylmethyl sulfonylfluoride. In the presence of NAD+, ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k cat value of 27.71/s and a k cat/K m value of 26.80 × 103/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification.  相似文献   

2.
A medicinal mushroom, Phellinus linteus, was successfully cultivated using a cheese-processing waste, whey, and the optimal bioconversion conditions for the maximum mycelial growth rate was also estimated through solid-state cultivation experiments. Response surface analysis with a face-centered design (center point replication = 5) was applied to statistically approximate the simultaneous effects of the three variables, i.e., substrate concentration (10–30 g lactose l−1), temperature (20–30°C), and pH (4–6), on the mycelial growth rate of P. linteus. The following is a partial cubic model where η is the mycelial growth rate (K r ) and x k is the corresponding variable term (k = substrate concentration, temperature, and pH in order): η = −23.8 + 8.67 × 10−2 x 1 + 1.48x 2 + 1.77x 3 + 8.00 × 10−4 x 1 x 2 + 7.25 × 10−2 x 1 x 3 + 5.13 × 10−2 x 2 x 3 −1.28 × 10−2 x 12 –3.18 × 10−2 x 22. −2.64 × 10−1 x 32 −3.28 × 10−3 x 1 x 2 x 3 + 4.68 × 10−4 x 12 x 2. The produced response surface model proved to be significant (r 2 > 0.99, P-value <0.0001, coefficient of variation <5%) to describe the explored space. Temperature was found to be the most significant factor of dominant effects on the mycelial growth rate, and other variables such as temperature2, pH, pH2, and (substrate concentration2 × temperature) also showed significant effects on the model output. The maximum mycelial growth rate was predicted to be 2.80 mm d−1 at 29.7 g lactose l−1, 26.2°C, and pH 5. Our results proved a good potential of whey to serve as an alternative growth medium for cultivating P. linteus mycelia. This may provide another potential for managing this nutrient-rich waste in a cost-effective way.  相似文献   

3.
4.
Zhao ZG  Hu TT  Ge XH  Du XZ  Ding L  Li ZY 《Plant cell reports》2008,27(10):1611-1621
Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2= 38) + Orychophragmus violaceus (2= 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2= 51–67) with a range of 19–28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC1 plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC1 plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2= 41–54) with 9–16 chromosomes from O. violaceus. BC2 plants showed segregations for female fertility, leaf shape and still some chromosome variation (2= 39–43) with 2–5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC2 plants, monosomic addition lines (2= 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. Z. Zhao and T. Hu make equal contributions to this work.  相似文献   

5.
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme. K m, V max, and K cat of the enzyme were 4.727 × 10−2 mg/ml, 394.68 U, and 4.2175 × 10−2 s−1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65°C), with maximum activity at pH 11 and 60°C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65°C. Hg2+, Cu2+, Fe3+, Zn2+, Cd+, and Al3+ inhibited enzyme activity, while 1 mM Co2+ enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.  相似文献   

6.
Kim HT  Ko HJ  Kim N  Kim D  Lee D  Choi IG  Woo HC  Kim MD  Kim KH 《Biotechnology letters》2012,34(6):1087-1092
A gene, alg7D, from Saccharophagus degradans, coding for a putative alginate lyase belonging to the family of polysaccharide lyase-7, was overexpressed in Escherichia coli. The properties of the recombinant Alg7D were characterized. The enzyme endolytically depolymerized alginate by β-elimination into oligo-alginates with degrees of polymerization of 2–5. Its activity was maximal at 50°C and pH 7 and was slightly increased in the presence of Na+. The K M , V max , k cat , and k cat /K M values were: 3 mg ml−1, 6.2 U mg−1, 1.9 × 10−2 s−1, and 6.3 × 10−3 mg−1 ml s−1, respectively.  相似文献   

7.
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3′ non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5′ 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5′ or 3′ silencing inducer rootstocks. When non-silenced scions were grafted onto 5′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3′ region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3′ region of the transgene and did not spread to the 5′ region. In addition, results from crossing experiments, involving non-silenced and 3′ silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5′–3′ direction, not in the 3′–5′ direction, along the transgene mRNA.  相似文献   

8.
Benzene has a wide range of industrial applications, but it is also a major source of environmental pollution. The most eco-friendly/cost-effective method of remediation is biodegradation. In the present study, we used a variety of microbial strains in different combinations on a selection of substrate concentrations to determine the most effective degradation processes. Bacterial strains of pure culture (L4, N3, and N6) were isolated from oil sludge in both Luria–Bertani buffer (LB) and nutrient broth media, and identified by 16S-rRNA analysis (≥98% similarity). The degradation experiments were performed using different combinations of bacterial strains (L4, N3, N6, L4 + N3, L4 + N6, N3 + N6, and L4 + N3 + N6) in modified carbon-free media with different concentrations of benzene as a carbon source (60, 100, and 160 mg l−1) at 30 °C. The isolates of L4 (Acc no: FJ686821), N3 (FJ686825) and N6 (FJ868628) were identified as Bacillus spp. using 16S-rRNA gene sequence analysis. All combinations of isolates have the capacity to degrade benzene. However, the L4 + N3 combination was more efficient than the other mixed or single cultures. In the presence of N6 isolate, the degradation rate of benzene decreased, possibly due to inter- and/or intra species interaction amongst the bacteria. The kinetic parameters ‘K m’ of the Lineweaver–Burk regressions conducted as part of this experiment showed that the lower the level of K m was, the better the biodegradation achieved. The results of this study showed that the use of Bacillus strains in benzene decomposition is feasible. In addition, different strain combinations exhibited different degradation patterns, which are attributed to the most efficient mixed cultures of Bacillus spp.  相似文献   

9.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

10.
A water‐soluble, high‐output fluorescent sensor, based on a lumazine ligand with a thiophene substituent for Cd2+, Hg2+ and Ag+ metal ions, is reported. The sensor displays fluorescence enhancement upon Cd2+ binding (log  β = 2.79 ± 0.08) and fluorescence quenching by chelating with Ag+ and Hg2+ (log β = 4.31 ± 0.15 and 5.42 ± 0.1, respectively). The mechanism of quenching is static and occurs by formation of a ground‐state non‐fluorescent complex followed by rapid intersystem crossing. The value of the Stern–Volmer quenching rate constant (kq) by Ag+ ions is close to 6.71 × 1012 mol/L/s at 298 K. The thermodynamic parameters (ΔG, ΔH and ΔS) were also evaluated and indicated that the complexation process is spontaneous, exothermic and entropically favourable. The quantitative linear relationship between the softness values of Klopman (σK) or Ahrland (σA) and the experimental binding constants (β) being in the order of Hg2+ > Ag+ > Cd2+ suggests that soft–soft interactions are the key for the observed sensitivity and selectivity in the presence of other metal ions, such as: Pb2+, Ni2+, Mn2+, Cu2+, Co2+, Zn2+ and Mg2+ ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

12.
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium × hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-μF capacitor in a 250-V cm−1 electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33–36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 μS cm−1 allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l−1 kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l−1 kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.  相似文献   

13.
Acute rejection is a common phenomenon in transplantation. Inflammatory and anti-inflammatory mediators affect the graft microenvironment. Th1 responses cause acute rejection while Th2 immune responses help the survival of the graft. In this study, we evaluated gene polymorphisms of IL-6 G-174C, TGF-β T+869C, IL-4 C-590T, and IFN-γ T+874A cytokines in renal transplant patients. ARMS-PCR method was used to characterize IL-6 G-174C (rs76144090), TGF-β T+869C (rs1800471), and IFN-γ T+874A (rs2430561) polymorphisms and PCR-RFLP, for characterization of IL-4 C-590T (rs2243250) in 100 renal transplant patients. Acute rejection episodes were diagnosed according to the standard criteria. Analysis of the results showed that IL-6-174 GG genotype (P = 0.018, OR = 3.023, 95% CI = 1.183–7.726) and IL-6-174G allele (P = 0.046, OR = 2.114, 95% CI = 1.005–4.447) were more frequent, but IL-6-174GC genotype was less frequent in acute rejection of kidney transplantation in comparison with control group (P = 0.024, OR = 0.302, 95% CI = 0.103–0.883). IFN-γ+874 T allele was associated with a higher risk of acute rejection (P = 0.019, OR = 2.088, 95% CI = 1.124–3.880) while IFN-γ+874 AA genotype was associated with a lower risk of rejection (P = 0.023, OR = 0.318, 95% CI = 0.115–0.875). Frequencies of TGF-β T+869C and IL-4 C-590T were not significantly different (P > 0.05). Consequently, our results show that IL-6 G-174C and IFN-γ T+874A gene polymorphisms have predictive values for acute rejection after renal transplantation in Iranian patients.  相似文献   

14.
The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO2 + 15CaO + 5ZnO + 10 Nb2O5 + (60 – x)B2O3 + Nd2O3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω2, Ω4, Ω6 have been calculated using the Judd–Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross‐sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω2 > Ω6 > Ω4 If Ω6 > Ω4, the glass system is favourable for the laser emission 4F3/2 → 4I11/2 in the infrared (IR) wavelength. The experimental values of branching ratio of 4F3/2 → 4I11/2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (AT), stimulated emission cross‐section (σe) and gain bandwidth parameters (σe × Δλp) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands.  相似文献   

15.
In vivo modulation of HMG-CoA reductase (HMGR) activity and its impact on artemisinin biosynthesis as well as accumulation were studied through exogenous supply of labeled HMG-CoA (substrate), labeled MVA (the product), and mevinolin (the competitive inhibitor) using twigs of Artemisia annua L. plants collected at the pre-flowering stage. By increasing the concentration (2–16 μM) of HMG-CoA (3-14C), incorporation of labeled carbon into artemisinin was enhanced from 7.5 to 17.3 nmol (up to 130%). The incorporation of label (14C) into MVA and artemisinin was inhibited up to 87.5 and 82.9%, respectively, in the presence of 200 μM mevinolin in incubation medium containing 12 μM HMG-CoA (3-14C). Interestingly, by increasing the concentration of MVA (2-14C) from 2 to 18 μM, incorporation of label (14C) into artemisinin was enhanced from 10.5 to 35 nmol (up to 233%). When HMG-CoA (3-14C) concentration was increased from 12 to 28 μM in the presence of 150 μM mevinolin, the inhibitions in the incorporation of label (14C) into MVA and artemisinin were, however, reversed and the labels were found to approach their values in twigs fed with 12 μM HMG-CoA (3-14C) without mevinolin. In another experiment, 14.2% inhibition in artemisinin accumulation was observed in twigs in the presence of 175 μM fosmidomycin, the competitive inhibitor of 1-deoxy-d-xylulose 5-phosphate reductase (DXR). HMG-CoA reductase activity and artemisinin accumulation were also increased by 18.6 to 24.5% and 30.7 to 38.4%, respectively, after 12 h of treatment, when growth hormones IAA (100 ppm), GA3 (100 ppm) and IAA + GA3 (50 + 50 ppm) were sprayed on A. annua plants at the pre-flowering stage. The results obtained in this study, hence, demonstrate that the mevalonate pathway is the major contributor of carbon supply to artemisinin biosynthesis and HMGR limits artemisinin synthesis and its accumulation in A. annua plants.  相似文献   

16.
17.
A chlorophyll b-less mutant of Chlamydomonas reinhardtii (Pg 27) was isolated after UV irradiation of the wild type cells. This photosynthetically competent mutant totally lacks chlorophyll b and the CP2 chlorophyll-protein complex. However, SDS-PAGE, proteolytic digestions and immunodetections demonstrated that the 24–25 Kd apoproteins of the lacking CP2 complex are still present in thylakoids of the Pg27 mutant. It is concluded that this CP2-less mutant is affected in the biosynthesis pathway of chlorophyll b.This CP2-less mutant was crossed with a CP1-less mutant (Fl5) Fluorescence emission spectra and fluorescence inductions in the presence of DCMU were analysed in the resulting (cp 2 , cp 1 + ), (cp 2 + , cp 1 ), (cp 2 + , cp 1 + ), cp 2 , cp 1 )tetratype. Differences in PS 2 optical cross section and in the relative amplitude or localisation of fluorescence emission peaks fit well with a quadripartite model where PS1 and PS2 would each correspond to a reaction centre core complex (CP1 and CP2 respectively) associated to a light harvesting antenna (LHC1 and LHC2 respectively). The occurrence of energy transfers from PS1 peripheral antenna to PS2 in the Fl 5 mutant shows that, in absence of CP1, at least a part of its associated PS1 light harvesting antenna migrates in the PS2 containing appressed thylakoids.Abbreviations Chl Chlorophyll - LHC Light harvesting chl a/b complex - CP2 Predominant form of LHC or SDS polyacrylamide gels - WT Wild type - DM Double mutant (cp 1 , cp 2 ) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - DOC-PAGE Deoxycholate polyacrylamide gel electrophoresis  相似文献   

18.
Efficient transformation of the human pathogen Corynebacterium diphtheriae was achieved with novel cloning vectors consisting of a mini-replicon from the cryptic C. glutamicum plasmid pGA1 as well as of the aph(3′)-IIa or tetA(Z) antibiotic resistance genes. Plasmid-containing transformants of C. diphtheriae were recovered at frequencies ranging from 1.3 × 105 to 4.8 × 106 colony forming units (cfu)/μg of plasmid DNA. Vector DNA was directly transferred from Escherichia coli into C. diphtheriae with frequencies up to 5.6 × 105 cfu/μg of plasmid DNA. On the basis of the pGA1 mini-replicon, an expression vector system was established for C. diphtheriae by means of the P tac promoter and the green fluorescent reporter protein. In addition, other commonly used vector systems from C. glutamicum, including the pBL1 and pHM1519 replicons, and the sacB conditionally lethal selection marker from Bacillus subtilis, were shown to be functional in C. diphtheriae. Thus, the ability to apply the standard methods of C. glutamicum recombinant DNA technology will greatly facilitate the functional analysis of the recently completed C. diphtheriae genome sequence. Received: 26 November 2001 / Accepted: 15 February 2002  相似文献   

19.
To express Escherichia coli novablue dipeptidyl carboxypeptidase (EcDCP), the gene was amplified by PCR and cloned into the expression plasmid pQE-31 to yield pQE-EcDCP. His6-tagged EcDCP (His6-EcDCP) was over-expressed in E. coli M15 (pQE-EcDCP) as a soluble and active form under 0.05 mM IPTG induction at 26°C for 12 h. The recombinant enzyme was purified to homogeneity by Ni2+-NTA resin and had a molecular mass of approximately 75 kDa. The temperature and pH optima for His6-EcDCP were 37°C and 7.0, respectively. In the presence of 200 mM NaCl, His6-EcDCP was stimulated by 1.5 fold. The K M and k cat values of the enzyme for N-benzoyl-l-glycyl-l-histidyl-l-leucine were 1.83 mM and 168.3 s−1, respectively. His6-EcDCP activity was dramatically inhibited by 10 mM EDTA, 0.25 mM 1.10-phenanthroline, and 2.5 mM DEPC, but it was not affected by Ser, Asp, Lys, and Trp protease inhibitors. Analysis of His6-EcDCP by circular dichroism revealed that the secondary structures of the enzyme in 30 mM universal buffer (pH 7.0) were 17% α-helix, 35% β-sheet and 47% random coil. Mid point of thermal transition was calculated to be 55°C for the recombinant enzyme.  相似文献   

20.
The English grain aphid, Sitobion avenae (Fabricius), is one of the most important insect pests causing substantial yield losses in wheat production in China and other grain-growing areas in the world. The efficient utilization of wheat genes for resistance to English grain aphid (EGA) provides an efficient, economic and environmentally sound approach to reduce the yield losses. In the present study, the wheat line C273 (Triticum durum AABB, 2n = 4x = 28), is resistant to EGA in greenhouse and field tests. To identify the resistance gene, designated RA-1 temporarily, C273 was crossed with susceptible genotype Poland 305 (T. polonicum, AABB, 2n = 4x = 28). The F1, F2 and F2:3 lines were tested with EGA in the field and greenhouse. The results indicated that RA-1 is a single dominant gene, closely linked to the microsatellite markers (SSR) Xwmc179, Xwmc553 and Xwmc201 on chromosome 6AL at genetic distances of 3.47, 4.73 and 7.57 cM, respectively. The three SSR markers will be valuable in marker-assisted selection for resistance to EGA as well as for cloning this gene in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号