首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We have previously reported that human umbilical cord blood-derived stromal cells (hUCBDSCs) are able to enhance the expansion of CFU-Meg in vitro, particularly promote the megakaryocytic lineage recovery, and effectively protect the survival of irradiated mice. In this study, we demonstrated that hUCBDSCs secreted SDF-1 to stimulate PECAM-1 expression in HEL cells (MK cell line), and consequently promoted the proliferation and migration of HEL cells. On the other hand, SDF-1 knock down in hUCBDSCs or PECAM-1 knock down in HEL cells diminished or abrogated the above effect. In addition, SDF-1/PECAM-1 probably activated PI3K/Akt and MAPK/ERK1/2 pathways. This report for the first time defines a SDF-1/PECAM-1 signaling pathway in the proliferation and migration of MKs, which provides supportive evidence for the clinical applications of hUCBDSCs in the treatment of megakaryocytic injury.  相似文献   

2.
It has been demonstrated that stromal cell precursors exist in human umbilical cord blood. After being cultured in vitro, these cells are called human umbilical cord blood-derived stromal cells (hUCBDSCs). However, the role of hUCBDSCs in hematopoiesis is still unclear. We have previously shown that hUCBDSCs are superior to human bone marrow stromal cells (hBMSCs) at enhancing the expansion of megakaryocyte colony forming units (CFU-Meg). Based on this observation, we postulated that hUCBDSCs might promote megakaryocytopoiesis. To test this hypothesis, we developed a megakaryocyte/hUCBDSC co-culture model and a hematopoietic microenvironment injury model in nude mice. We explored the ability and mechanisms by which hUCBDSCs promoted the proliferation of megakaryocytes in vitro, and we also explored their capacity to restore the hematopoietic microenvironment in vivo. As expected, hUCBDSCs were more effective than hBMSCs at enhancing the proliferation of megakaryocyte lines from HEL cells and restoring megakaryocytopoiesis in a hematopoietic microenvironment injury model in nude mice. Thrombopoietin (TPO) and stromal cell derived factor-1 (SDF-1) are two of the key factors underlying this capacity. We also found that gap junction intercellular communication (GJIC) between HEL cells and hUCBDSCs might be partially absent. Our data provide the first evidence that hUCBDSCs play a regulatory role during megakaryocytopoiesis, which might be important for designing treatments for patients with megakaryocytic injury.  相似文献   

3.
4.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily and is expressed by hematopoietic and endothelial cells (ECs). Recent studies have shown that PECAM-1 plays a crucial role in promoting the development of the EC inflammatory response in the context of disturbed flow. However, the mechanistic pathways that control PECAM-1 protein stability remain largely unclear. Here, we identified PECAM-1 as a novel substrate of the APC/Cdh1 E3 ubiquitin ligase. Specifically, lentivirus-mediated Cdh1 depletion stabilized PECAM-1 in ECs. Conversely, overexpression of Cdh1 destabilized PECAM-1. The proteasome inhibitor MG132 blocked Cdh1-mediated PECAM-1 degradation. In addition, Cdh1 promoted K48-linked polyubiquitination of PECAM-1 in a destruction box-dependent manner. Furthermore, we demonstrated that compared with pulsatile shear stress (PS), oscillatory shear stress decreased the expression of Cdh1 and the ubiquitination of PECAM-1, therefore stabilizing PECAM-1 to promote inflammation in ECs. Hence, our study revealed a novel mechanism by which fluid flow patterns regulate EC homeostasis via Cdh1-dependent ubiquitination and subsequent degradation of PECAM-1.  相似文献   

5.
Plasmacytoid dendritic cells (pDCs) secrete large amounts of IFN-alpha upon exposure to virus, subsequently promoting and regulating innate and adaptive immune responses. However, little is known about the functional regulation of virus-activated pDCs after they exert functions in secondary lymph organs. Our previous studies show that splenic stromal microenvironment can down-regulate the T cell response by inducing generation of regulatory myeloid dendritic cells; therefore, we wondered whether the splenic stromal microenvironment can regulate the function of virus-activated pDCs. In this study, we provide evidences that the splenic stromal microenvironment can chemoattract vesicular stomatitis virus (VSV)-activated pDCs via stromal cell-derived factor 1 (SDF-1), inhibit the secretion of IFN-alpha, IL-12, TNF-alpha, and expression of I-Ab, CD86, CD80, and CD40 by VSV-activated pDCs, and subsequently inhibit VSV-infected pDCs to activate NK cell IFN-gamma production and cytotoxicity. Stroma-derived TGF-beta participates in the negative regulation of VSV-activated pDCs. Therefore, we demonstrate that splenic stromal microenvironment negatively regulates the virus-activated pDCs through TGF-beta, outlining an additional mechanistic explanation for maintenance of immune homeostasis.  相似文献   

6.
7.
8.
PECAM-1 (CD31) is a member of the immunoglobin (Ig) superfamily of cell adhesion molecules whose expression is restricted to hematopoietic and vascular cells. PECAM-1 can recruit adapter and signaling molecules via its immunoreceptor tyrosine activation motif (ITAM), suggesting that PECAM-1 plays a role in signal transduction pathways. To study the involvement of PECAM-1 in signaling cascades in vivo, we used the major histocompatibility (MHC) I gene promoter to target ectopic PECAM-1 expression in transgenic mice. We noted an attenuation of mammary gland development at early stages of virgin ductal branching morphogenesis. STAT5a, a modulator of milk protein gene expression during lactation, was localized to the nuclei of ductal epithelial cells of 6-week-old virgin PECAM-1 transgenics, but not in control mice. This correlated with decreases in ductal epithelial cell proliferation and induction of p21, an inhibitor of cell cycle progression. Using in vitro model systems we demonstrated PECAM-1/STAT5a association and found that residue Y701 in PECAM-1's cytoplasmic tail is important for PECAM-1/STAT5 association and that PECAM-1 modulates increases in STAT5a tyrosine phosphorylation levels. We suggest that by serving as a scaffolding, PECAM-1 can bring substrates (STAT5a) and enzymes (a kinase) into close proximity, thereby modulating phosphorylation levels of selected proteins, as previously noted for beta-catenin.  相似文献   

9.
Mesenchymal stromal cells (MSCs) are bone marrow-derived cells with multipotent differentiation capability that are mobilized into the circulation in response to injury and localize to areas of tissue damage including solid tumors. They have the capacity to adopt a phenotype similar to carcinoma-associated fibroblasts (CAFs) and, like CAFs, promote tumor growth. The molecular communication between tumor cells and MSCs has not been well defined. However, MSCs have increased expression of the chemokine stromal-derived factor 1 (SDF-1) when exposed to conditioned medium from tumor cells. Additionally, SDF-1 has been shown to be important in the promotion of tumor growth by CAFs. These data suggest that the SDF-1 signaling axis is a key feature of the tumor microenvironment. In this report, we demonstrate that interleukin 8 (IL-8) induces an increase in SDF-1 expression by MSCs. The increase in SDF-1 expression in response to IL-8 is mediated by the activation of the protein kinase C (PKC) zeta isoform. In a functional assay, activation of PKC is required for in vitro MSC migration in response to tumor conditioned medium. These results indicate that IL-8-mediated SDF-1 production by MSCs requires PKC zeta activation. This signaling pathway provides insight into possible molecular targets for cancer therapy aimed at disrupting the interaction between components of the tumor microenvironment.  相似文献   

10.
PECAM-1 (CD31) is a cell adhesion molecule that is highly expressed in the endothelium. Hematopoietic cells including platelets, monocytes, neutrophils, and some T cells also express moderate levels of PECAM-1. PECAM-1 undergoes alternative splicing generating a number of isoforms in the endothelium. However, the expression of PECAM-1 isoforms in hematopoietic cells and platelets has not been determined. Here, we examined the expression pattern of PECAM-1 isoforms in human and rodent hematopoietic cells and platelets by RT-PCR and DNA sequencing analysis. Our results showed that multiple PECAM-1 isoforms are expressed in a cell-type and species-specific pattern. We identified seven human PECAM-1 isoforms, six murine PECAM-1 isoforms, and four rat PECAM-1 isoforms. The full-length PECAM-1 was the predominant isoform detected in human cells. The PECAM-1 isoforms that lack exon 14 and 15 (delta14&15) or delta12,14&15 were the predominant isoform in rodent cells. In addition, we identified a novel PECAM-1 isoform, delta13&14, in human hematopoietic cells. Thus, hematopoietic cells express multiple isoforms of PECAM-1 in a pattern similar to that observed in the endothelium of the same species. The regulated expression of these isoforms may be important during hematopoiesis and transendothelial migration.  相似文献   

11.
12.
SDF-1 and CXCR4 in normal and malignant hematopoiesis   总被引:12,自引:0,他引:12  
Over recent years it has become apparent that the chemokine SDF-1 and its receptor CXCR4 play pivotal roles in normal hematopoiesis. They are essential for the normal ontogeny of hematopoiesis during embryogenesis and continue to play a key role in retaining hematopoietic progenitors within the bone marrow microenvironment in the adult. As a result of this role disruption of SDF-1/CXCR4 interactions results in mobilization of hematopoietic progenitors and standard mobilization protocols disrupt this axis. Similarly SDF-1/CXCR4 interactions are required for homing and engraftment of hematopoietic stem cells during transplantation. SDF-1 regulates the localisation of leukemic cells and like their normal counterparts most leukemic cells respond to SDF-1 with increased adhesion, survival and proliferation. However in some instances leukemic cell responses to SDF-1 can be disregulated, the impact of which on the progression of disease in not known. In this review we discuss the pleiotropic roles of SDF-1/CXCR4 interactions in human hematopoietic stem cell ontogeny, bone marrow homing and engraftment, mobilization and how these interactions impact on malignant hematopoiesis.  相似文献   

13.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

14.
PECAM-1 (CD31) is a member of immunoglobulin gene superfamily, which is highly expressed on the surface of endothelial cells and at moderate levels on hematopoietic cells. Hematopoietic cells and platelets, like endothelial cells, express multiple isoforms of PECAM-1. However, the identity and physiological role of these isoforms during hematopoiesis remains largely unknown. Here we demonstrate that PECAM-1 expression is dramatically up regulated upon phorbol myristate acetate (PMA) or transforming growth factor (TGF)-beta1-mediated differentiation of leukemic HEL and U937 cells. The level of PECAM-1 expression did not significantly change during activation of Jurkat T cells by PMA or phytohaemagglutinin (PHA). Utilizing RT-PCR and DNA sequencing analysis, we show that the expression of PECAM-1 isoforms changes in a cell-type and lineage specific manner during cellular differentiation and activation. We identified a number of novel PECAM-1 isoforms previously not detected in the endothelium. These results demonstrate that regulated expression of PECAM-1 and its exonic inclusion/exclusion occurs during differentiation and/or activation of hematopoietic cells. Thus, different PECAM-1 isoforms may play important roles in generation of hematopoietic cells and their potential interactions with vascular endothelium.  相似文献   

15.
The interaction between the stromal cell-derived factor-1 alpha (SDF-1α, CXCL12) and its chemokine receptor CXCR4 has been reported to regulate stem cell migration, mobilization and homing. The CXCR4 antagonist plerixafor is highly efficient in mobilizing hematopoietic progenitor cells (HPCs). However, the precise regulatory mechanisms governing the CXCR4/SDF-1α axis between the bone marrow niche and HPCs remain unclear. In this study, we quantify the impact of plerixafor on the interaction between human bone marrow derived mesenchymal stromal cells (MSCs) and human CD34+ HPCs. An assessment of SDF-1α levels in the supernatant of MSC cultures revealed that exposure to plerixafor led to a transient increase but had no long-term effect. In Transwell experiments, we observed that the addition of SDF-1α significantly stimulated HPC migration; this stimulation was almost completely antagonized by the addition of plerixafor, confirming the direct impact of the CXCR4/SDF-1α interaction on the migration capacity of HPCs. We also developed a new microstructural niche model to determine the chemotactic sensitivity of HPCs. Time-lapse microscopy demonstrated that HPCs migrated actively along an SDF-1α gradient within the microchannels and the quantitative assessment of the required minimum gradient initiating this chemotaxis revealed a surprisingly high sensitivity of HPCs. These data demonstrate the fine-tuned balance of the CXCR4/SDF-1α axis and the synergistic effects of plerixafor on HPCs and MSCs, which most likely represent the key mechanisms for the consecutive mobilization of HPCs from the bone marrow niche into the circulating blood.  相似文献   

16.
Physiological interactions between the nervous and immune systems with components of the local microenvironment are needed to maintain homeostasis throughout the body. Dynamic regulation of bone remodeling, hematopoietic stem cells, and their evolving niches via neurotransmitter signaling are part of the host defense and repair mechanisms. This crosstalk links activated leukocytes, neuronal, and stromal cells, which combine to directly and indirectly regulate hematopoietic stem cells. Together, interactions between diverse systems create a regulatory "brain-bone-blood triad," contributing an additional dimension to the concept of the hematopoietic stem cell niche.  相似文献   

17.
Human umbilical cord blood-derived stromal cells (hUCBDSCs), a novel population isolated from CD34(+) cells by our laboratory, exerted an immunosuppressive effect on xenogenic T cells. This study aimed to investigate whether hUCBDSCs play a critical role in the suppression of acute graft-versus-host disease (aGVHD). The hUCBDSCs were co-cultured with splenocytes (SPCs) of donor C57BL/6 mice. The aGVHD in the recipient (B6×BALB/c) F1 mice was induced by the infusion of bone marrow cells and SPCs from donor mice following sublethal irradiation. The shift in vivo for hUCBDSCs was detected. The proliferation and cell cycle of SPCs were tested by cell counting kit-8 and flow cytometry, respectively. The expression of CD49b natural killer (NK) cells and CD3 T cells was detected by flow cytometry in co-culture and post-transplantation. IL-4, and IFN-γ were detected by ELISA in the serum of co-culture and post-transplantation. The survival time, body weight, clinical score, and histopathological score were recorded for mice post-transplantation. The hUCBDSCs promoted the proliferation of SPCs and significantly increased the ratio of the S and G(2)/M phase (p < 0.05). The hUCBDSCs significantly increased the expression of CD49b NK cells and IL-4 protein and decreased the expression of CD3 T cells and IFN-γ protein both in vitro and in vivo. The survival time of mice with co-transplantation of hUCBDSCs was significantly prolonged, and decreased clinical and histopathological scores were also observed. The hUCBDSCs were continually detected in the target organs of GVHD. These results suggest that hUCBDSCs possess the capability of suppressing aGVHD, possibly via their influence on CD3 T cells, NK cells, and cytokines.  相似文献   

18.
19.
Cell adhesion is an important part of many complex biological processes. It plays crucial roles in cancer, development and maintenance of stem cell compartment. The measurement of adhesion under experimental conditions might provide important information for cell biology. There are several protocols to measure adhesion, usually based on washing or shaking to remove non-adherent cells. Here, we describe a quantification method based on gravitational force to measure adhesion in a 96-well format. Non-adherent cells are separated and only vital cells are quantified with a colorimetric assay. This assay can be used especially when the “anti-adhesion” effect is present only for a short period of time like is the case of peptides or cytokines since it provides a trap for non-adherent cells in a way that they can not touch again the adherent surface. As examples we provide the quantification of cell-cell interaction with blocking antibodies anti-CD44 in hematopoietic stem cells and the effect of the stromal cell derived factor-1 (SDF-1) in the Jurkat cell line when they are in contact with mesenchymal stromal cells. This method facilitates fast and reliable measurement of cell adhesion in multiwell format for screening assays.Key words: adhesion assay, adhesion, SDF-1, CD44, hematopoietic stem cells, leukemia cell lines  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号