首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 空间异质性研究对认识不同尺度上的生态系统结构、功能和过程具有重要的理论意义。采用地统计学理论和方法,通过空间异质性特征和比较研究了我国东北红松老龄林中主要树种,即红松(Pinus koraiensis)、云杉(Picea koraiensis)、冷杉(Abies nephrolepis)、枫桦(Betula costata)和紫椴(Tilia amurensis)的空间异质性程度、空间异质性组成、尺度和格局问题。结果表明:红松老龄林中主要树种虽然生长在同一林分中,但是它们的空间异质性与格局具有明显的差异。红松的空间异质性程度最高,分数维较低,其空间异质性主要由空间自相关部分组成,在450m的尺度内,具有明显的空间格局。枫桦的空间异质性程度最低,分数维最大,空间异质性主要由随机部分组成,在大于100m的尺度上不存在明显的空间格局。云杉和冷杉由于生长的立地相似,因此具有相似的空间异质性特征和格局。紫椴是红松最重要的伴生树种,其空间异质性程度、空间异质性组成、尺度和格局等方面与红松接近。红松老龄林中主要树种空间异质性与格局在一定尺度上的差异,反映这些树种在生态系统中具有不同的生态学功能和过程。  相似文献   

2.
Using animal movement paths to measure response to spatial scale   总被引:2,自引:0,他引:2  
Nams VO 《Oecologia》2005,143(2):179-188
Animals live in an environment that is patchy and hierarchical. I present a method of detecting the scales at which animals perceive their world. The hierarchical nature of habitat causes movement path structure to vary with spatial scale, and the patchy nature of habitat causes movement path structure to vary throughout space. These responses can be measured by a combination of path tortuousity (measured with fractal dimension) versus spatial scale, the variation in tortuousity of small path segments along the movement path, and the correlation between tortuousities of adjacent path segments. These statistics were tested using simulated animal movements. When movement paths contained no spatial heterogeneity, then fractal D and variance continuously increased with scale, and correlation was zero at all scales. When movement paths contained spatial heterogeneity, then fractal D sometimes showed a discontinuity at transitions between domains of scale, variation showed peaks at transitions, and correlations showed a statistically significant positive value at scales smaller than patch size, decreasing to below zero at scales greater than patch size. I illustrated these techniques with movement paths from deer mice and red-backed voles. These new analyses should help understand how animals perceive and react to their landscape structure at various spatial scales, and to answer questions about how habitat structure affects animal movement patterns.  相似文献   

3.
Fractal properties of forest spatial structure   总被引:2,自引:0,他引:2  
The definition of fractal dimension of natural objects, which enables to deal with scale dependence of fractal dimension is discussed. Abrupt changes of fractal dimension of spatial structure of terrestrial ecosystems are considered in the context of hierarchical paradigm. On this ground the procedure is proposed for segmentation of a territory, which takes into account the scale dependence of spatial variability of ecological parameters. Using remotely sensed data — normalized difference vegetation index (NDVI) and thermal radiation in the infrared band — fractal dimensions and critical scales are evaluated for different forest types with the help of software, developed for this purpose. The results obtained corroborate the potentialities of fractal approach in ecology. These methods and results can be used for discrimination of remotely sensed data; but further investigations, including detailed comparison of fractal characteristics of remotely sensed forest images with results of on-site field studies are necessary to validate them.  相似文献   

4.
毛乌素沙地沙生半灌木群落的空间异质性   总被引:31,自引:9,他引:22  
陈玉福  于飞海  董鸣 《生态学报》2000,20(4):568-572
在使用 5m× 50 0 0 m样带进行调查获得的植被盖度数据的基础上 ,通过半方差分析和分形分析揭示了毛乌素沙化草地沙生半灌木群落植被盖度的空间变异特点。半方差分析揭示出植被盖度的多尺度变异和等级斑块结构 ,在取样范围内至少存在着 3个等级。分形分析得出毛乌素沙地沙生半木群落植被盖度的分维 D=1 .90 ,接近于 2 ,指示着大部分空间变异发生在较小的尺度上 ;分段分形分析得出不同尺度范围内的分维 ,反映了空间异质性的多尺度变异性。这一结果揭示了荒漠化过程引起的生境破碎化  相似文献   

5.
两个林分水曲柳土壤种子库空间格局的定量比较   总被引:11,自引:1,他引:10  
依据地统计理论和方法,采取规则网格数据结构的空间取样设计,在树种组成、林分密度及林下植被等均不相同的两个林分中设置样地,对水曲柳土壤种子库的空间格局进行了定量比较研究.结果表明,在水曲柳杨树等混生的样地1,种子库密度较大(158.1±96.7个·m^-2),异质性程度较高(C0+C=0.549),格局尺度相对较大(4.52m),空间自相关因素引起的变异高达89.4%,随机变异仅占10.6%,格局变异呈现较高的自相似性(分数维值D=1.728-1.865).在水曲柳纯林中的样地2,种子库密度较小(57.4±44.7个·m^-2),异质性程度较低(C0+C=0.125),且主要体现在相对较小的尺度范围内(2.59m),空间自相关变异占56.8%,随机因素对空间格局的影响较大(D=1.906-1.960).两样地之间种子库空间格局表现的尺度范围、强度及空间结构等有显著差异,林分空间异质性是导致这种差异的主要原因.  相似文献   

6.
Local spatial variation in species distributions is driven by a mix of abiotic and biotic factors, and understanding such hierarchical variation is important for conservation of biodiversity across larger scales. We sought to understand how variation in species composition of understory vascular plants, spiders, and carabid beetles is associated with concomitant spatial variation in forest structure on a 1‐ha permanent plot in a never‐cut mixedwood forest in central Alberta (Canada). Using correlations among dendrograms produced by cluster analysis we associated data about mapped distribution of all living and dead stems > 1 cm diameter at breast height with distributions of the three focal taxa sampled from regular grids across the plot. Variation in each of these species assemblages were significantly associated with several forest structure variables at various spatial scales, but the scale of the associations varied among assemblages. Variation in species richness and abundance was explained mostly by changes in basal area of trees across the plot; however, other variables (e.g. snag density and tree density) were also important, depending on assemblage. We conclude that fine‐scale habitat variation is important in structuring spatial distribution of the species of the forest floor, even within a relatively homogeneous natural forest. Thus, assessments that ignore within‐stand heterogeneity and management that ignores its maintenance will have limited utility as conservation measures for these taxa, which are major elements of forest biodiversity.  相似文献   

7.
不同植物类群物种丰富度垂直格局分形特征的比较   总被引:8,自引:0,他引:8       下载免费PDF全文
格局和过程一直是生态学的核心问题,该文应用“非布朗运动随机分形”模型,在北京东灵山远离人为干扰地区的阴坡设置了两条宽2 m的样带,描述和比较了暖温带落叶阔叶林区乔木、灌木、草本以及总的植物物种丰富度在不同尺度上沿海拔梯度变异特征,以及相关的生态过程。研究结果表明:1)直接梯度法刻画了植物物种丰富度在海拔梯度上的总体变化趋势,并不能从中获得更多的信息。“非布朗运动随机分形”模型揭示了不同尺度上物种丰富度的空间变化并能和生态过程相联系,研究表明该模型适合对乔木、灌木和草本植物物种丰富度的垂直梯度格局特征进行描述,但对总的植物物种丰富度有一定的局限性。2)乔木物种丰富度在海拔梯度上的变化主要受两种生态过程的控制,小尺度上分形维数接近于2,主要受独立的不具有长程相关的生态过程控制,呈近随机分布;大尺度上分形维数接近于1,主要受自相关范围大、具有长程关联特性的生态过程控制,随海拔上升呈近似单调下降的趋势。灌木和草本物种丰富度在海拔梯度上的变化主要受3种生态过程的控制,小尺度和大尺度上的特征与乔木相似;但在中等尺度上,分形维数接近于1.5,它们以近似布朗运动的形式变化。虽然乔木和灌木物种丰富度在海拔梯度上变化的尺度范围相似,但决定它们的主要生态过程完全不同,或相同的生态过程以截然不同的方式作用于两种不同的植物类群。总的植物物种丰富度在整个尺度范围内呈现标度不变性,这可能是由于决定其变化的生态过程作用尺度紧密相关,也可能因为该文研究范围的局限性。  相似文献   

8.
The major processes generating pattern in plant community composition depend upon the spatial scale and resolution of observation, therefore understanding the role played by spatial scale on species patterns is of major concern. In this study, we investigate how well environmental (topography and soil variables) and spatial variables explain variation in species composition in a 25-ha temperate forest in northeastern China. We used new variation partitioning approaches to discover the spatial scale (using multi-scale spatial PCNM variables) at which environmental heterogeneity and other spatially structured processes influence tree community composition. We also test the effect of changing grain of the study (i.e. quadrat size) on the variation partitioning results. Our results indicate that (1) species composition in the Changbai mixed broadleaf-conifer forest was controlled mainly by spatially structured soil variation at broad scales, while at finer scales most of the explained variation was of a spatial nature, pointing to the importance of biotic processes. (2) These results held at all sampling grains. However, reducing quadrat size progressively reduced both spatially and environmentally explained variance. This probably partly reflects increasing stochasticity in species abundances, and the smaller proportion of quadrats occupied by each species, when quadrat size is reduced. The results suggest that environmental heterogeneity (i.e. niche processes) and other biotic processes such as dispersal work together, but at different spatial scales, to build up diversity patterns.  相似文献   

9.
A central problem in ecology is to understand spatial–temporal variation in abundance–occupancy relationship (AOR) and to identify the biological and anthropogenic drivers behind this variation. How AOR is influenced by ecological traits and anthropogenic disturbances is poorly understood. A data set of woody plants from eleven forest fragments around Kampala area, Uganda, recorded in 1990 and resampled in 2010 was used to analyse spatial variation in AORs at regional scales, variation between tree size classes and temporal change in these patterns. Slopes of the AORs for each forest were related to data on forest disturbances and effects of species traits on AOR at regional scales assessed. There were statistically significant positive interspecific AORs at regional scales. Over two decades, the strength of AOR and slopes increased at the regional scale. At local scale, slopes decreased, in correspondence with increasing disturbance. Species traits interacted with abundance to explain statistically significant variation in occupancy. Species successional status best explained occupancy variability. Incorporating species' traits and anthropogenic disturbance over time may lead to better understanding of the variation in interspecific AOR, and these results suggest that anthropogenic exploitation could be responsible for the changes in slope over time.  相似文献   

10.
It has been argued that the characteristics of many commonly occurring surface textures are such that the resulting luminance distributions have the statistical properties of fractals, over a wide range of spatial scales. We show that, when fractal luminance distributions are spatially filtered, the spatial density of zero-crossings obtained is inversely proportional to the scale of filtering, and is not strongly dependent on the fractal dimension of the pattern used. We propose that this predictable property of natural images could provide a basis for the estimation of lateral spatial extent by counting zero-crossings within an interval at a variety of spatial scales, and averaging over spatial scale. We carried out experiments to compare the relative apparent lateral extents of fractal patterns and patterns of equally spaced bars, as a function of the number of bars. The results are in good agreement with theory.  相似文献   

11.
用巴拿马50 hm2森林动态监测样地内直径≥1 cm的树种资料,分析了该样地树种多度(个体数)和丰富度(物种数)及其方差和变异系数在6个取样尺度(5 m×5 m,10 m×10 m,20 m×20 m,25 m×25 m,50 m×50 m,100 m×100 m)的变化规律.结果显示:(1)由于多度的可加性,不同取样尺度在样地内树种多度的变化表现出一致性;随取样尺度的增加,多度方差呈线性增加,而变异系数呈线性减小.(2)丰富度随取样尺度的变化较为复杂,随取样尺度的增加,丰富度方差呈非线性变化,在取样尺度为25 m×25 m时方差最大;变异系数随取样尺度的增加而呈线性减小.研究表明,大尺度的多度值可以由小尺度的多度值通过外推法估计,而丰富度却不能,在生物多样性的保护和管理中不能简单地从一个取样尺度的生物丰富度推测另一个取样尺度丰富度.  相似文献   

12.
One cornerstone of ecological theory is that nutrient availability limits the number of species that can inhabit a community. However, the relationship between the spatial distribution of limiting nutrients and species diversity is not well established because there is no single scale appropriate for measuring variation in resource distribution. Instead, the correct scale for analyzing resource variation depends on the range of species sizes within the community. To quantify the relationship between nutrient distribution and plant species diversity, we measured NO3- distribution and plant species diversity in 16 paired, modified Whittaker grassland plots in Serengeti National Park, Tanzania. Semivariograms were used to quantify the spatial structure of NO3- from scales of 0.4–26 m. Plant species diversity (Shannon-Weiner diversity index; H ) was quantified in 1-m2 plots, while plant species richness was measured at multiple spatial scales between 1 and 1,000 m2. Small-scale variation in NO3- (<0.4 m) was positively correlated with 1-m2 H , while 1,000-m2 species richness was a log-normal function of average NO3- patch size. Nine of the 16 grassland plots had a fractal (self-similar across scales) NO3- spatial distribution; of the nine fractal plots, five were adjacent to plots that had a non-fractal distribution of NO3-. This finding offered the unique opportunity to test predictions of Ritchie and Olff (1999): when the spatial distribution of limiting resources is fractal, communities should display a left-skewed log-size distribution and a log-normal relationship between net primary production and species richness. These predictions were supported by comparisons of plant size distributions and biomass-richness relationships in paired plots, one with a fractal and one with a non-fractal distribution of NO3-. In addition, fractal plots had greater large-scale richness than paired non-fractal plots (1,0–1000 m2), but neither species diversity (H ) nor richness was significantly different at small scales (1 m2). This result is most likely explained by differences in the scale of resource variation among plots: fractal and non-fractal plots had equivalent NO3- variation at small scales but differed in NO3- variation at large scales (as measured by the fractal dimension). We propose that small-scale variation in NO3- is largely due to the direct effects of plants on soil, while patterns of species richness at large scales is controlled by the patch size and fractal dimension of NO3- in the landscape. This study provides an important empirical step in understanding the relationship between the spatial distribution of resources and patterns of species diversity across multiple spatial scales.  相似文献   

13.
An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10–1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30–600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20–300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.  相似文献   

14.
保安湖—湖湾大型水生植物群落格局的研究   总被引:6,自引:2,他引:4  
用地质统计学中的半方差和双对数半方差图对保安湖-湖湾(黄风口)的大型水生植物群落格局进行了研究,在不同的尺度上对群落及其主要组成种类的空间异质性进行了定量的描述。结果表明:保安湖黄风口大型水生植物群落的双对数半方差图存在线性区域,群落具有分形特征(自相似性).在不同的尺度下,群落和各组成种类空间格局具有不同的分形维数值,异质性程度存在差异。但其异质性程度不高,建议进行群落调查时,样方尺度应取520m;单一种群调查时的样方尺度取380m.    相似文献   

15.
不同尺度下城市景观综合指数的空间变异特征研究   总被引:14,自引:1,他引:13  
在GIS与RS技术支持下,采用5 m分辨率的SPOT遥感图像数据,从城市土地利用角度,利用半变异函数对不同尺度的景观多样性、聚集度与分维数的空间变异进行了定量分析.结果表明,不同尺度下3种指数的空间变异具有相似特征,各个尺度上都具有空间依赖性,尺度越小,空间依赖性越大,空间变异的细节更显著,空间自相关性对总体变异的贡献逐渐增加,但尺度过小,有时会破坏景观内部结构.不同指数的半变异函数模型在相同尺度上差异显著,说明不同景观指数在不同尺度下的半变异函数模型不具可比性.就研究上海市内部土地利用结构而言,1 km的幅度是较合适的空间尺度.景观指数空间变异特征是尺度的函数,尺度对景观格局的影响不能忽视.景观综合指数对尺度响应的生态过程揭示了上海城市空间结构的规律性:在小尺度上的复杂无规律性,中尺度上的多中心性和大尺度上的圈层结构性,但各个尺度是相互依赖的,没有绝对界限.  相似文献   

16.
1. To evaluate the spatial extent of the effects of forest cover on stream ecosystems, we measured algae, invertebrate, and fish biomass and invertebrate and fish community structure in 38 small first- to third-order streams in the National Capital Region of Canada along with forest cover at different spatial scales.
2. We considered 55 spatial scales of forest cover including several buffer widths (doubling 10–320 m) and lengths (doubling 10–1280 m, entire riparian distance upstream from sampling area) and entire catchments to determine which spatial scale maximized the correlation with biomass and metrics of community structure.
3. The proportion of variability in biomass and structural metrics explained by forest cover generally increased with increasing scale, suggesting that catchment-wide disturbances are the most influential determinants of benthic and fish communities.
4. Catchment forest cover explained more variation in algal (adjusted r 2   =   0.54), invertebrate (adjusted r 2   =   0.51) and fish (adjusted r 2   =   0.33) biomass than structural metrics of invertebrates and fish (adjusted r 2   =   0.08–0.27).
5. Analyses of the partial effects of forest cover at three scales (reach, riparian and the entire catchment) on biomass and community structure metrics identified catchment and reach scales as being most influential and never detected a significant partial effect of forest cover at the riparian scale.
6. These results suggest that maintenance or protection of reach and riparian buffers alone will not sufficiently protect stream function and structure from catchment-wide impacts.  相似文献   

17.
Many species appear to be undergoing shifts in phenology, arising from climate change. To predict the direction and magnitude of future changes requires an understanding of how phenology depends on climatic variation. Species show large‐scale spatial variation in phenology (affected by differentiation among populations) as well as variation in phenology from year‐to‐year at the same site (affected predominantly by local plasticity). Teasing apart spatial and temporal variation in phenology should allow improved predictions of phenology under climate change. This study is the first to quantify large‐scale spatial and temporal variation in the entire emergence pattern of species, and to test the relationships found by predicting future data. We use data from up to 33 years of permanent transect records of butterflies in the United Kingdom to fit and test models for 15 butterfly species. We use generalized additive models to model spatial and temporal variation in the distribution of adult butterflies over the season, allowing us to capture changes in the timing of emergence peaks, relative sizes of peaks and/or number of peaks in a single analysis. We develop these models using data for 1973–2000, and then use them to predict phenologies from 2001 to 2006. For six of our study species, a model with only spatial variation in phenology is the best predictor of the future, implying that these species have limited plasticity. For the remaining nine species, the best predictions come from a model with both spatial and temporal variation in phenology; for four of these, growing degree‐days have similar effects over space and time, implying high levels of plasticity. The results show that statistical phenology models can be used to predict phenology shifts in a second time period, suggesting that it should be feasible to project phenologies under climate change scenarios, at least over modest time scales.  相似文献   

18.
Fractal geometry and other multi-scale analyses have become popular tools for investigating spatial patterns of animal distributions in heterogeneous environments. In theory, changes in patterns of animal distributions with changes in scale reflect transitions between the controlling influences of one environmental factor or process over another. In an effort to find linkages between Steller sea lions (Eumetopias jubatus) and their environment, the objective of this study was to determine if the spatial distribution of Steller sea lions at sea displayed similar scaling properties to the variation of two environmental features, including bathymetry and sea surface temperature (SST). Additionally, distributions of Steller sea lion point patterns were examined with respect to measurements of bathymetric complexity. From February 2000 to May 2004, satellite transmitters were deployed on 10 groups of juvenile Steller sea lions (n=52) at eight different locations within the Aleutian Islands and Gulf of Alaska. Indices of fractal dimension were calculated for each group of sea lions using a unit square box-counting method, whereas indices of bathymetry and SST patchiness were derived by conducting a variance ratio analysis over the same scales. Distributions of Steller sea lions at sea displayed self-similar fractal patterns, suggesting that individuals were distributed in a continuous hierarchical set of clumps within clumps across scales, and foraging behavior was likely influenced by a scale invariant mechanism. Patterns of bathymetric variability also were self-similar, whereas patterns of SST variability were scale dependent and failed to retain self-similar spatial structure at larger scales. These results indicate that the distributions of Steller sea lions at sea were more influenced by bathymetry than SST at the scales examined, but scale-dependent patterns in the distribution of Steller sea lions at sea or linkages with SST may have been apparent if analyses were conducted at finer spatial scales.  相似文献   

19.
Associations between spatial distribution of ground-beetles (Carabidae) and environmental variables were studied over three hierarchical scales in deciduous forest in central Alberta, Canada We also examined the relationship between species abundance and distribution on several scales ranging from the local scale of our study to that of the North American temperate deciduous forest Understorey plant cover, tree cover, and occurrence of other carabids were associated with distribution of particular species at the smallest ecological scales within populations However, great differences in population sues of carabid species among five distinct sites several kilometres apart were not correlated with variation in the same environmental variables In central Alberta, abundance and extent of distribution were correlated positively among the 30 carabid species collected, and distributions of the ten species classified as 'core' species were generally aggregated at all spatial scales On the continental scale, there was a significant positive correlation between abundance and distribution for the 114 species of the entire data set, and the six species meeting the criteria of 'core' taxa on this scale, were also 'core' elements in central Alberta Further analysis of covariance of core elements of species assemblages across different taxa provides a sound empirical approach for understanding community organization  相似文献   

20.
Many spatially complex environments are fractal, and consumers in these environments face scale-dependent trade-offs between encountering high densities of small resource patches versus low densities of large resource patches. I address the effects of these trade-offs on foraging by incorporating scale-dependent encounter of resources in fractal landscapes into classical optimal foraging theory. This model is then used to predict optimal scales of perception (foraging scale) and patch choice in response to spatial features of landscapes. The model predicts that, for a given density of resources, landscapes with greater extent and fractal dimension and that contain patchy (low fractal dimension) resources favour large foraging scales and specialization on a small proportion of resource patches. Fragmented (low fractal dimension) landscapes of small extent with dispersed (high fractal dimension) resources favour smaller foraging scales and generalists that use a large proportion of available resource patches. These predictions synthesize the results of other spatially explicit consumer–resource models into a simple framework and agree reasonably well with results of several empirical studies. This study thus places optimal foraging theory in a spatial context and suggests evolutionary mechanisms of consumers' responses to important spatial phenomena (e.g. habitat fragmentation, resource aggregation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号