首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper describes the embryonic development of some parts of the sensory peripheral nervous system in the leg anlagen of the cricket Teleogryllus commodus in normal and heat shocked embryos. The first peripheral neurons appear at the 30% stage of embryogenesis. These tibial pioneer neurons grow on a stereotyped path to the central nervous system and form a nerve which is joined by the growth cones of axons that arise later, including those from the femoral chordotonal organ, subgenual organ and tympanal organ. The development of these organs is described with respect to the increase in number of sensory receptor cells and the shape and position of the organs. At the 100% stage of embryogenesis all three organs have completed their development in terms of the number of sense cells and have achieved an adult shape. To study the function of the tibial pioneer neurons during embryogenesis a heat shock was used to prevent their development. Absence of these neurons has no effect on the development of other neurons and organs proximal to them. However, the development of distal neurons and organs guided by them is impaired. The tibial pioneer neurons grow across the segmental boundary between femur and tibia early in development, and the path they form seems to be essential for establishing the correct connections of the distal sense organs with the central nervous system.  相似文献   

2.
In Xenopus tailbud embryos, the mandibular branch of trigeminal sensory nerve has a transient pathway innervating the cement gland. This pathway is settled by pioneer neurons in the trigeminal ganglion and along which extend later-growing axons from the trigeminal ganglion and the hindbrain. Axons in this branch express a neuronal recognition molecule, Contactin 1, from the initial stage of its outgrowth in early tailbud embryos and form a tightly joined, strongly Contactin 1-positive fascicle in the later stages. When the expression vector encoding the enhanced green fluorescent protein was electrotransfected into the brain neurons of early tailbud embryos, the fluorescence was detected in the hindbrain and the trigeminal nerve at late tailbud stages. Cotransfection of antisense vector caused knockdown of Contactin 1 concurrent with defasciculation and misguidance of the sensory axons in the trigeminal mandibular branch. The results suggest that Contactin 1 is required for the growing axon of hindbrain sensory neurons to recognize and follow the pathway settled by the pioneer neurons.  相似文献   

3.
According to the adhesive "guidepost" hypothesis, pioneer axons follow pathways marked by specific nonadjacent cells (guidepost cells). The hypothesis implies that high adhesivity between extending axons and guidepost cells facilitates axon extension across low-adhesivity tissues or spaces between guidepost cells. This study investigates the ability of a high-adhesivity substratum to promote axonal extension across a low-adhesivity substratum in vitro. Dissociated chick embryo dorsal root ganglion neurons are cultured on a substratum consisting of areas of high-adhesivity substratum-bound laminin (i.e., model adhesive guideposts) separated by a low-adhesivity agarose substratum. Increasing the cell-substratum adhesivity of these guideposts results in an increase in the percentage of neurites spanning a given width of the low-adhesivity substratum. Filopodial processes at the tips of neurites can extend over the low-adhesivity substratum. Apparently, filopodial contact with high-adhesivity guideposts enables neurites to extend across intervening low-adhesivity substrata. The maximum width of low-adhesivity substratum discontinuities spanned by some neurites in vitro is comparable to the distance between some putative guidepost cells in insects. Consistent with the adhesive guidepost hypothesis, these findings demonstrate neurite extension on a substratum of discontinuous cell-substratum adhesivity.  相似文献   

4.
The founding of the first nerve path of the grasshopper metathoracic leg was examined at the level of identified neurons, using intracellular dye fills, immunohistochemistry, Nomarski optics, and scanning and transmission electron microscopy. The embryonic nerve is established by the axonal trajectory of a pair of afferent pioneer neurons, the tibial 1 (Ti1) cells. Following a period of profuse filopodial sprouting, the Ti1 axonal growth cones, possessing 75- to 100-microns-long filopodia, navigate a stereotyped path across the limb bud epithelium to the base of the appendage and into the CNS. The Ti1 axons grow from cell to cell along a chain of preaxonogenesis neurons spaced at intervals along the pathway, forming dye-passing junctions with them. The contacted neurons subsequently undergo axonogenesis and follow the pioneer axons into the CNS. Later arising neurons project their axons onto the cell bodies of the chain, thereby establishing the principal branch points of the nerve. Among the later arising afferents are the sensory neurons of the femoral chordotonal and subgenual organs. The morphology of the adult nerve appears to be determined by the stereotyped positioning of neurons in the differentiating limb bud and by the resultant axonal trajectories established during the first 10% of peripheral neurogenesis.  相似文献   

5.
Neuronal development of the majority of trochozoan animals with biphasic pelago-bentic life cycle starts from transient peripheral neurons, which do not belong to the central nervous system and are mainly located in the apical sensory organ and in the hyposphere. Some of these neurons are pioneer and send neurites that form a scaffold upon which the adult central nervous system later develops. In representative species of molluscs and polychaetes, immunolabelling with the antibodies against neurotransmitters serotonin and FMRFamide, and acetylated α-tubulin revealed that the structure of almost all early peripheral neurons is typical for sensory, most probably chemosensory cells: flask shape, and cilia at the end of the apical dendrite or inside the distal ampoule. Morphology, transmitter specificity, location and projections of the early sensory cells differ in trochophores of different species thus suggesting different origin of these cells. In polychaete larvae, pharmacological inhibition of serotonin synthesis in early peripheral neurons did not affect the development, whereas its increase resulted in developmental arrest and neural malformations, suggesting that early peripheral sensory neurons are involved in developmental regulation.  相似文献   

6.
The grasshopper antenna is an articulated appendage associated with the deutocerebral segment of the head. In the early embryo, the meristal annuli of the antenna represent segment borders and are also the site of differentiation of pioneer cells which found the dorsal and ventral peripheral nerve tracts to the brain. We report here on another set of cells which appear earlier than the pioneers during development and are later found arrayed along these tracts at the border of epithelium and lumen. These so-called nerve tract associated cells differ morphologically from pioneers in that they are bipolar, have shorter processes, and are not segmentally organized in the antenna. Nerve tract associated cells do not express horseradish peroxidase and so are not classical neurons. They do not express antigens such as repo and annulin which are associated with glia cells in the nervous system. Nerve tract associated cells do, however, express the mesodermal/mesectodermal cell surface marker Mes-3 and putatively derive from the antennal coelom and then migrate to the epithelium/lumen border. Intracellular recordings show that such nerve tract associated cells have resting potentials similar to those of pioneer cells and can be dye coupled to the pioneers. Similar cell types are present in the maxilla, a serially homologous appendage on the head. The nerve tract associated cells are organized into a cellular scaffold which we speculate may be relevant to the navigation of pioneer and sensory axons in the early embryonic antennal nervous system.  相似文献   

7.
The first neurons to extend axons through embryonic grasshopper limbs are a pair of sibling pioneer neurons. After migrating proximally along the limb axis, the pioneer growth cones normally make an abrupt ventral turn. In some cases (less than 20%) this turn is directly toward the proximo-ventrally located Cx1 guidepost neurons. However, in the majority of cases (greater than 80%) the pioneer growth cones make a more acute ventral turn along a single circumferential line which lies distal to the Cx1 neurons. Growth cones from other afferent neurons orient along the same line. Growth cones can extend along this line around more than half of the circumference of the limb and can grow in either direction along it. The circumferential line appears to be the prospective trochanter-coxa segment boundary. Afferent axons on the segment boundary leave it and contact the proximo-ventrally located Cx1 neurons. The site at which pioneer growth cones leave the boundary is variable and appears to be the point from which filopodial contact with Cx1 cells is first established. In addition to the trochanter-coxa segment boundary, the pioneer growth cones and axons also respond to the tibia-femur and femur-trochanter segment boundaries. The role of segment boundaries as barriers to growth cone movement and the effect of such barriers on the timing and placement of differentiation of pioneer neurons are discussed.  相似文献   

8.
The sensory neurons of the Drosophila wing differentiate during the initial stages of metamorphosis, appearing in the imaginal wing disc as it everts and flattens. These identifiable neurons arise in a stereotyped sequence, and lay down a specific pattern of axon bundles which travel proximally to the CNS. In several locations, the early arising "pioneer" neurons send axons in the direction of more proximal pioneer neurons, later joining with these to form continuous peripheral nerves. It is possible that distal neurons can contact more proximal neurons by random filopodial search, and use this information to guide axonal outgrowth. To test this "guidepost" hypothesis, everting wing discs were raised in vitro to allow surgical manipulation. Neural outgrowth was largely normal in vitro, though growth of the wing was stunted. If such discs were cut into proximodistal fragments before or at the time of initial axonogenesis, neural outgrowth remained normal: distal axons still grew in the direction of the now missing proximal neurons. Thus, proximal neurons are not necessary for the correct guidance of distal neurons in the developing wing.  相似文献   

9.
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.  相似文献   

10.
The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest‐generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype‐1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

11.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

12.
13.
14.
Recent investigations confirm the importance of nonsynaptic signal transmission in several functions of the nervous tissue. Present in various periventricular brain regions of vertebrates, the system of cerebrospinal fluid (CSF)-contacting neurons seems to have a special role in taking up, transforming and emitting nonsynaptic signals mediated by the internal and external CSF and intercellular fluid of the brain. Most of the CSF-contacting nerve cells send dendritic processes into the internal CSF of the brain ventricles or central canal where they form terminals bearing stereocilia and a 9+0-, or 9+2-type cilium. Some of these neurons resemble known sensory cells of chemoreceptor-type, others may be sensitive to the pressure or flow of the CSF, or to the illumination of the brain tissue. The axons of the CSF-contacting neurons transmit information taken up by dendrites and perikarya to synaptic zones of various brain areas. By forming neurohormonal terminals, axons also contact the external CSF space and release various bioactive substances there. Some perikarya send their axons into the internal CSF, and form free endings there, or synapses on intraventricular dendrites, perikarya and/or on the ventricular surface of ependymal cells. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated in the brain tissue subependymally or farther away from the ventricles. Among neuronal elements entering the internal CSF-space, the hypothalamic CSF-contacting neurons are present in the magnocellular and parvicellular nuclei and in some circumventricular organs like the paraventricular organ and the vascular sac. The CSF-contacting dendrites of all these areas bear a solitary 9 x 2+0-type cilium and resemble chemoreceptors cytologically. In electrophysiological experiments, the neurons of the paraventricular organ are highly sensitive to the composition of the ventricular CSF. The axons of the CSF-contacting neurons terminate not only in the hypothalamic synaptic zones but also in tel-, mes- and rhombencephalic nuclei and reach the spinal cord as well. The supposed chemical information taken up by the CSF-contacting neurons from the ventricular CSF may influence the function of these areas of the central nervous system. Some nerve cells of the photoreceptor areas form sensory terminals similar to those of the hypothalamic CSF-contacting neurons. Special secondary neurons of the retina and pineal organ contact the retinal photoreceptor space and pineal recess respectively, both cavities being embryologically derived from the 3rd ventricle. The composition of these photoreceptor spaces is important in the photochemical transduction and may modify the activity of the secondary neurons. Septal and preoptic CSF-contacting neurons contain various opsins and other compounds of the phototransduction cascade and represent deep encephalic photoreceptors detecting the illumination of the brain tissue and play a role in the regulation of circadian and reproductive responses to light. The medullo-spinal CSF-contacting neurons present in the oblongate medulla, spinal cord and terminal filum, send their dendrites into the fourth ventricle and central canal. Resembling mechanoreceptors of the lateral line organ, the spinal CSF-contacting neurons may be sensitive to the pressure or flow of the CSF. The axons of these neurons terminate at the external CSF-space of the oblongate medulla and spinal cord and form neurohormonal nerve endings. Based on information taken up from the CSF, a regulatory effect on the production or composition of CSF was supposed for bioactive materials released by these terminals. Most of the axons of the medullospinal CSF-contacting neurons and the magno- and parvicellular neurosecretory nuclei running to neurohemal areas (neurohypophysis, median eminence, terminal lamina, vascular sac and urophysis) do not terminate directly on vessels, instead they form neurohormonal nerve terminals attached by half-desmosomes on the basal lamina of the external and vascular surface of the brain tissue. Therefore, the bioactive materials released from these terminals primarily enter the external CSF and secondarily, by diffusion into vessels and the composition of the external CSF, may have a modulatory effect on the bioactive substances released by the neurohormonal terminals. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated subependymally or farther away from the ventricles, among others in the neurosecretory nuclei. Since tight-junctions are lacking between ependymal cells of the ventricular wall, not only CSF-contacting but also subependymal ciliated neurons may be influenced by the actual composition of the CSF besides that of the intercellular fluid of the brain tissue. According to the comparative histological data summarised in this review, the ventricular CSF-contacting neurons represent the phylogenetically oldest component detecting the internal fluid milieu of the brain. The neurohormonal terminals on the external surface of the brain equally represent an ancient form of nonsynaptic signal transmission.  相似文献   

15.
Summary The olfactory organ of Helisoma trivolvis is located on the surface of the body at the base of the cephalic tentacles. An evagination of skin, the olfactory plica, at the base of the tentacle extends over the olfactory organ dorsally. The epithelium of the olfactory organs contains unspecialized epithelial cells, ciliated epithelial cells, basal cells, mucous secretory cells, and sensory dendrites. The surface of the epithelium has a complex brush border of thick plasmatic processes, which branch to form several terminal microvillar twigs. Long slender cytoplasmic processes form a dense spongy layer among the plasmatic processes beneath the level of the terminal twigs. Bipolar primary sensory neurons clustered beneath the epithelium of the olfactory organ send dendrites through the epithelium to the free surface. Some sensory endings have a few short cilia, but most bear only microvilli. Cilia of sensory endings and epithelial cells extend beyond the brush border of the epithelium. Small axons arise from the perikarya of the sensory neurons and enter a branch of the olfactory nerve. HRP tracing indicates that the axons pass to the cerebral ganglion without interruption. Histochemical tests indicate that the sensory neurons are neither aminergic nor cholinergic.  相似文献   

16.
Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains.  相似文献   

17.
Summary The development of neurons possibly related to the outgrowth of axons from the labial palp-pit organ was studied in Pieris rapae. Serial sections of six successive stages between pupation and emergence of the imago were examined with the electron microscope. At pupation the palp contains an apical scolopidial organ (ASO) and cellular strands connected to it. The ASO consists of three type-1 scolopidia, which are characterized by the presence of a ciliary 9 × 2 + 0 pattern throughout the dendritic outer segment and a ciliary dilation beneath the cap. The scolopidia show two special features: (i) the dendritic outer segments reach beyond the cap, and (ii) an intricate junctional complex develops between the dendritic inner segments and the scolopale cells. The cellular strands comprise two types of cells: (1) bipolar cells regarded as neurons due to their cytological features, and (2) enveloping cells, which are wrapped around the bipolar cells. The strands degenerate about 10 h after pupation. The sensory cells of the ASO degenerate consecutively between 28 h and 130 h after pupation. However, their enveloping cells survive and endure in the imago, which emerges about 160 h after pupation. An ASO similarly lacking sensory cells was observed in imagines of Pieris brassicae. It is hypothesized that the ASO and the bipolar neurons of the strands play a role in pathfinding of the axons of the labial palp-pit organ.Supported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

18.
Summary The development of the sensory neurons of the legs of the blowfly,Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.  相似文献   

19.
Evidence is offered that the axons of developing sensory neurons in the wing of Drosophila are guided (given both location and polarity information) by the epithelium over which they grow. This guidance is effective in the absence of such potential additional cues as guidepost neurons and physical channels.  相似文献   

20.
Larvae of the nudibranch Phestilla sibogae are induced to metamorphose by a water-borne chemical cue released by the adult nudibranch's prey, the coral Porites compressa. In competent larvae, the apical sensory organ (ASO) includes five serotonergic parampullary neurons; five ampullary neurons, the ampullae of which are filled with sensory cilia; and a basal neuropil. After sensing the coral cue, the ASO undergoes radical morphological changes: a deterioration of sensory elements in the ASO and serotonergic axons originating from them to innervate the velum. Three hours after metamorphic induction, the velar lobes are lost, the serotonergic axons begin to break apart, the five parampullary neurons begin to degenerate, and the five ampullary neurons retract away from the epidermal surface. The extent of deterioration evident by this time suggests that the parampullary and ampullary components of the ASO are no longer functional. By 10 h after metamorphic induction, labeling of the ciliary bundles in the ampullary neurons has disappeared, and it is likely that these cells have degenerated. The results presented here provide evidence that the sensory neurons of the ASO and probably the entire organ are solely larval structures that do not persist into the adult sensory-nervous system in P. sibogae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号