共查询到20条相似文献,搜索用时 10 毫秒
1.
Jirsakova Vladimira Reiss-Husson Françoise Ranck Jean-Luc Moya Ismaël 《Photosynthesis research》1997,54(1):35-43
The core light-harvesting complex B875 isolated from the purple bacterium Rubrivivax gelatinosus and its different spectral forms B820 and B840, which are depleted of carotenoid, were investigated by steady-state and time-resolved fluorescence, and by electron microscopy. Images of B875 have been shown to contain cyclic oligomers with a diameter of 150–200 Å and with a central hole of 25 Å [Jirsakova V, Reiss-Husson F and Ranck JL (1996) Biochim Biophys Acta 1277: 150–160]. Dilute B820 samples contained heterogeneous, compact particles that tend to aggregate with increasing concentration of protein, forming clumps without any visible substructure. At the same time the absorption maximum of such aggregates shifted to 840 nm. Fluorescence emission and life times were analyzed by single photon counting. In B875 samples the major component emitted at 892 nm with a life time of 0.64 ns. B820 samples emitted at 830 nm with a life-time of 1 ns. An additional short life-time component of 0.3–0.4 ns was found in B820 and emitted at about 860 nm; its contribution increased with the B820 concentration. This latter component is attributed to the fluorescence quenching occuring within the non-native aggregates of B820 formed in the absence of carotenoid. When the B875 antenna was reconstituted from B820 subunit and hydroxyspheroidene, it presented an emission spectrum and a fluorescence decay identical to those observed in the native core complex, pointing to the structural role of the carotenoid for the proper architecture of this antenna. 相似文献
2.
采用新型表面活性剂LDAO,结合DEAE纤维素层析法,我们提纯了紫细菌Rhodobactersphaeroides601的光合反应中心。在一定温度和丙酮的协同作用下,外加的植物脱镁叶绿素a可取代反应中心细菌脱镁叶绿素,形成含有脱镁叶绿素a的紫细菌光合反应中心(PheaRC)。当协同作用15min和60min时,反应中心中的细菌脱镁叶绿素分别被替代了50%和71%。在PheaRC中,细菌脱镁叶绿素的QX(537nm)和QY(758nm)特征峰显著下降,而出现高等植物脱镁叶绿素的QX(509/542nm)和QY(674nm)特征峰。排除温度和丙酮的影响,替代时间为15min或60min的PheaRC的光化学活性分别为对照的78%或71%。 相似文献
3.
Corson Gary E. Nagashima Kenji V. P. Matsuura Katsumi Sakuragi Yumiko Wettasinghe Ruwanthi Qin Hong Allen Randy Knaff David B. 《Photosynthesis research》1999,59(1):39-52
Sequencing of a 3.4 kb DNA fragment isolated from the photosynthetic purple sulfur bacterium Chromatium vinosum and of PCR products has resulted in identification of the Chr. vinosum pufL, pufM, and pufC genes, reading from the 5 to the 3 direction, and coding, respectively, for the L, M and cytochrome c subunits of the reaction center of this bacterium. Other PCR products have been used to obtain complete sequences for the pufB and pufA genes, located immediately upstream from pufL and encoding the apoproteins of two Chr. vinosum light- harvesting proteins. The 3-portion of the bchZ gene, a gene that codes for a protein involved in the biosynthesis of bacteriochlorophyll, has been located immediately upstream from pufB. A second pufB gene, pufB2, has been located downstream from pufC, as has the 5-portion of a second pufA gene, pufA2. The location of a second set of pufB and pufA genes, encoding light- harvesting proteins, downstream from pufC has not previously been reported for any photosynthetic bacterium. Translation of the gene sequences encoding these Chr. vinosum light-harvesting proteins reveals both similarities to and differences from the amino acid sequences, obtained from direct sequencing of the apoproteins, previously reported for Chr. vinosum light-harvesting proteins. Translation of these gene sequences, and of those for pufL, pufM and pufC, revealed significant homology, at the amino acid level, to the corresponding peptides of photosynthetic purple non-sulfur bacteria. 相似文献
4.
Nucleotide sequences of the genes coding for the M and cytochrome subunits of the photosynthetic reaction center of Rhodocyclus gelatinosus, a purple bacterium in the subdivision, were determined. The deduced amino acid sequences of these proteins were compared with those of other photosynthetic bacteria. Based on the homology of these two photosynthetic proteins, Rc. gelatinosus was placed in the subdivision of purple bacteria, which disagrees with the phylogenetic trees based on 16S rRNA and soluble cytochrome c
2. Horizontal transfer of the genes which code for the photosynthetic apparatus in purple bacteria can be postulated if the phylogenetic trees based on 16S rRNA and soluble cytochrome c
2 reflect the real history of purple bacteria.Abbreviations LH I
light harvesting complex I
- RC
reaction center 相似文献
5.
Proteolytic enzyme (trypsin) was used to structurally alter the RCs isolated from plant and bacterium as a way of probing the relation between structure (chromophore-apoprotein interactions) and function (photochemical activity). It was found that neither spectral characteristics (absorption spectrum, the 4th derivative of absorption spectrum) nor photochemical activity (pheophytine photoreduction, P680 photooxidation, etc.) were changed dramatically in D1/D2/cytochrom b
559 PS 2 reaction center complex digested with trypsin. The PS 2 RC treated with trypsin migrates by one green band during electrophoresis with dodecylmaltoside. The peptides with a molecular mass higher than 3–4 kDa were not separated from PS 2 RC. These data indicate that digestion of D1 and D2 proteins does not disturb yet the conformation of peptides or their interactions in so-called core of RC and the native state of pigments. In contrast to that, the RC from Rhodopseudomonas viridis treated with enzyme has changed absorption spectrum and lost photochemical activity. The stability of the bacterial RC increased after exchange of LDAO by dodecylmaltoside.Abbreviations Chl
chlorophyll a
- Cyt
cytochrome
- DPC
diphenylcarbazide
- Dodecylmaltoside
dodecyl--D-maltoside
- LDAO
lauryldimethylamino oxide
- Pheo
pheophytine
- PS 2
Photosystem 2
- RC
reaction center
- SiMo
silicomolybdate
- SD
sodium dodecyl sulfate 相似文献
6.
The effect of molecular oxygen on the photochemical activity of the Rhodobacter sphaeroides reaction centers frozen to 160 K under actinic illumination was investigated by the ESR method. About 90% of initially photochemically active bacteriochlorophyll (P) were fixed at 160 K for a long time in aerobic samples in an inactive form. In anaerobic samples, not more than 65% were fixed in an inactive form under the same conditions. In aerobic preparations, a small portion of photochemically active bacteriochlorophyll (about 10%) that retains its photochemical activity at 160 K after freezing under illumination has dark reduction kinetics similar to that of samples at room temperature after several seconds of actinic illumination. In anaerobic samples frozen under illumination, the remaining photochemically active reaction centers (35%) have the same dark reduction kinetics as samples illuminated at 295 K for 1-2 min. The conclusion is that the irreversible stabilization of bacteriochlorophyll P in the oxidized inactive state formed in the reaction centers frozen under illumination is brought about by light-induced conformational changes fixed under low temperatures. 相似文献
7.
紫细菌捕光色素蛋白复合体及光化学反应中心的研究进展 总被引:2,自引:0,他引:2
概述了近年来有关紫细菌捕光色素蛋白复合体及光化学反应中心的研究进展,并重点介绍了两种捕光色素蛋白复合体的结构以及复合体中相关色素分子在激发能传递中的作用机理.还详细阐述了紫细菌光化学反应中心的结构及反应中心中各个辅助因子在光能转化为生物可利用的化学能中的作用机理. 相似文献
8.
The modification effects on the absorption and cirular dichroic (CD) spectra of the isolated B800-860 antenna complex of Rhodocyclus tenuis by a number of proteolytic enzymes were investigated. The chymotrypsin modifications of the B800-860 complex led to an about 40% decrease of the 860-nm band and a blue-shift to 841 nm. The biphasic CD signal related to the B860 BChl disappeared and a new double CD signal with a zero-crossing point at 842 nm appeared. These absorption and CD spectral changes suggested that a B800-841 complex resulted after chymotrypsin digestion. The polypeptide components of the chymotrypsin-modified B800-860 complex were separated by reverse-phase chromatography, and their amino acid sequences determined by protein sequencing and mass spectrometry. Sequence analyses showed that the C-terminal 25 residues of the B800-860- polypeptide and the C-terminal 8 residues of the B800-860- polypeptide were cleaved by chymotrypsin, and the remaining , polypeptide fragments apparently form the structural basis for the newly-formed B800-841 complex. No significant spectral change was observed from exposing the isolated B800-860 complex to trypsin, carboxypeptidase A and the combination of carboxypeptidase A and carboxypeptidase B. Short-term proteinase K incubation of the B800-860 complex of Rc. tenuis led to a preferential decrease of the 860-nm absorbance band and its related CD signals, as compared to the 800-nm absorbance and CD bands, suggesting that the C-terminal portions of the antenna polypeptides are possibly exposed to the exterior of the B800-860 complex micelles. Whereas, long-term proteinase K digestion resulted in the spectral collapse of the B800-860 complex and the release of free BChls. Our proteolysis experiments support the hypothesis that the C-terminal portions of the antenna polypeptides play a key role in the redshift and strong molar extinction of the Qy band of the B850 BChls.Abbreviations B800-860
light-harvesting complex with the absorption maxima (Qy) at 800 nm and 860 nm
- B800-860-
-, polypeptide of the B800-860 complex
- CD
circular dichroism
- Deriphat-160
disodium Nlauryl--iminodipropionate
- FT
Fourier transform
- LH
light-harvesting
- near-IR
near infra-red
- OG
n-Octyl--glucoside
- PTH
phenylthiohydantoin
-
Rb.
Rhodobacter
-
Rc.
Rhodocyclus
-
Rp.
Rhodopseudomonas
-
Rsp
Rhodospirillum
- DSM
Deutsche Sammlung für Mikroorganismen 相似文献
9.
Knox PP Zakharova NI Seifullina NH Churbanova IY Mamedov MD Semenov AY 《Biochemistry. Biokhimii?a》2004,69(8):890-896
The dark reduction of photooxidized bacteriochlorophyll (P+) by photoreduced secondary quinone acceptor (QB-) in isolated reaction centers (RC) from the bacterium Rhodobacter sphaeroides wild type and mutant strain SA(L223) depending on the duration of light activation of RC was studied. The kinetics of the dark reduction of P+ decreased with increasing light duration, which is probably due to conformational changes occurring under prolonged light activation in RC from the wild type bacterium. In RC from bacteria of the mutant strain in which protonatable amino acid Ser L223 near QB is substituted by Ala, the dependence of reduction kinetics of P+ on duration of light was not observed. Such dependence, however, became observable after addition of cryoprotectors, namely glycerol and dimethylsulfoxide, to the RC samples from the mutant strain. It was concluded that substitution of Ser L223 with Ala disturbs the native mechanism of electrostatic stabilization of the electron in the RC quinone acceptor site. At the same time, an additional modification of RC hydrogen bonds by glycerol and dimethylsulfoxide probably includes various possibilities for more effective time delay of the electron on QB. 相似文献
10.
Evolution of heliobacteria: Implications for photosynthetic reaction center complexes 总被引:1,自引:0,他引:1
Wim F. J. Vermaas 《Photosynthesis research》1994,41(1):285-294
The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein shows rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria. 相似文献
11.
《Bioscience, biotechnology, and biochemistry》2013,77(3):650-655
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35°C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45°C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria. 相似文献
12.
Rates of thermoinduced conformational transitions of reaction center (RC) complexes providing effective electron transport were studied in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria using methods of fast freezing and laser-induced temperature jump. Reactions of electron transfer from the primary to secondary quinone acceptors and from the multiheme cytochrome c subunit to photoactive bacteriochlorophyll dimer were used as probes of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. In contrast to the quinone complex, the thermoinduced transition of the macromolecular RC complex to the state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds. This transition is thought to be mediated by large-scale conformational dynamics of the macromolecular RC complex. 相似文献
13.
Isotope substitution of H2O by 2H2O causes an increase in the rate of dark recombination between photooxidized bacteriochlorophyll (P+) and reduced primary quinone acceptor in Rhodobacter sphaeroides reaction centers (RC) at room temperature. The isotopic effect declines upon decreasing the temperature. Dehydration of RC complexes of Ectothiorhodospira shaposhnikovii chromatophores containing multiheme cytochrome c causes a decrease in the efficiency of transfer of a photomobilized electron between the primary and secondary quinone acceptors and from cytochrome to P+. In the case of H2O medium these effects are observed at a lower hydration than in 2H2O-containing medium. In the E. shaposhnikovii chromatophores subjected to dehydration in H2O, the rate of electron transfer from the nearest high-potential cytochrome heme to P+ is virtually independent of hydration within the P/P0 range from 0.1 to 0.5. In samples hydrated in 2H2O this rate is approximately 1.5 times lower than in H2O. However, the isotopic effect of this reaction disappears upon dehydration. The intramolecular electron transfer between two high-potential hemes of cytochrome c in samples with 2H2O is inhibited within this range of P/P0, whereas in RC samples with H2O there is a trend toward gradual inhibition of the interheme electron transfer with dehydration. The experimental results are discussed in terms of the effects of isotope substitution and dehydration on relaxation processes and charge state of RC on implementation of the reactive states of RC providing electron transfer control. 相似文献
14.
Yurkov Vladimir Menin Laure Schoepp Barbara Verméglio André 《Photosynthesis research》1998,57(2):129-138
Reaction centers (RC) from the species Erythrobacter (Eb.) litoralis, Erythromonas (Em.) ursincola and Sandaracinobacter (S.) sibiricus have been purified by LDAO treatment of light-harvesting-reaction center complexes and DEAE chromatography. The content and overall organisation of the RCs' chromophores, determined by linear dichroism (LD) and absorption spectroscopy, are similar to those isolated from anaerobic photosynthetic bacteria. The redox properties of the primary electron donor are pH-independent and very similar to those determined for anaerobic photosynthetic bacteria with midpoint potential values equal to 445 (± 10), 475 and 510 mV for Eb. litoralis, S. sibiricus and Em. ursincola, respectively. The RC purified from Eb. litoralis does not contain bound cytochrome (cyt), whereas RCs isolated from S. sibiricus and Em. ursincola possess a tetraheme cyt c. Each of these tetraheme cyts contains two high potential hemes and two low potential hemes. Their redox properties are very similar, with midpoint potentials equal to 385 (± 10), 305, 40, -40 mV for Em. ursincola and 355, 285, 30, -48 mV for S. sibiricus. At physiological pH, the midpoint potential of the primary electron acceptor (QA) varies with a slope of -60 mV/pH unit. The reduced form of QA presents pK values of 9, 9.8, 10.5 for S. sibiricus, Em. ursincola and Eb. litoralis, respectively. The main difference observed between RCs isolated from anaerobic photosynthetic and from obligate aerobic bacteria is the Emvalues of QA which are 65 to 120 mV higher in the last case. This difference is proposed to be a major reason for the inability of these species to grow under anaerobic photosynthetic conditions. 相似文献
15.
选择597 nm作为激发波长,探测范围为600~900 nm的荧光特性,分析了天然反应中心和两种去镁叶绿素置换的紫细菌反应中心的荧光发射光谱.借助细菌叶绿素、细菌去镁叶绿素和植物去镁叶绿素的荧光光谱,对相关组分进行了归类.实验结果表明选择性地置换细菌去镁叶绿素影响了荧光光谱的组成.在天然反应中心、BpheB置换的反应中心和BpheA,B置换的反应中心中可分别解析到4、3和2个荧光发射组分.研究肯定荧光发射组分与去镁叶绿素的结合存在对应关系.实验还分别在686.4、674.1和681.1 nm处测定了不同反应中心内的原初电子供体P的激发态通过荧光衰减的过程,观测到衰减动力学上的差异.说明去镁叶绿素置换影响了细菌反应中心内激发光能传递和原初光化学反应过程. 相似文献
16.
Isolation and characterization of light harvesting bacteriochlorophyll.protein complexes from Rhodopseudomonas capsulata 总被引:15,自引:0,他引:15
The isolation of two native light harvesting bacteriochlorophyl.protein complexes from Rhodopseudomonas capsulata is described. The light harvesting bacteriochlorophyll I (B 875) has been isolated from the blue-green mutant A1a+ lacking both carotenoids and light harvesting bacteriochlorophyll II. Light harvesting bacteriochlorophyll I is associated with a protein (light harvesting band 2) of 12 000 molecular weight. Light harvesting bacteriochlorophyll II complex has been isolated from the mutant Y5 lacking a reaction center and light harvesting bacteriochlorophyll I. Light harvesting bacteriochlorphyll II (B 800 + 850) together with carotenoids is associated with two polypeptides (light harvesting bands 3 and 4) having molecular weights of about 8000 and 10 000 (sodium dodecyl sulfate polyacrylamide gel electrophoresis). A third protein (light harvesting band 1) is in the purified light harvesting II fraction (mol. wt. approx. 14 000), but not associated with bacteriochlorophyll or carotenoids. The amino acid composition of the 3 antenna pigment II proteins is given. The polarity of these proteins was found to be 48%. From the amino acid composition the following molecular weights were calculated band 1: 17 350, band 3: 13 350 and band 4: 10 500. 相似文献
17.
We have isolated the water-soluble BChla-protein (FMO-protein) from the greer sulfur bacteriumChlorobium tepidum by a new procedure involving a salt-wash of isolated membranes at alkaline pH. The absorption spectrum of the isolated FMO-protein at 77 K was compared with that of a reaction-center complex containing the FMO-protein (FMO-RC complex) isolated fromC. tepidum following the procedure of Feiler U, Nitsche W and Michel H (1992) Biochemistry 31: 2608–2614. Oxidation or illumination of the FMO-RC complex caused bleaching of a component with a maximum at 836 nm which was not present in the purified FMO-protein. 相似文献
18.
Z. K. Makhneva M. A. Bol’shakov A. A. Ashikhmin Yu. E. Erokhin A. A. Moskalenko 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2009,3(2):123-127
Effects of photooxidation of bacteriochlorophyll (absorbtion at 850 nm) from the light-harvesting complex LH2 of Alc. minutissimum membranes on the LH2 complex structure have been studied. Photooxidation was induced by blue light that is absorbed by carotenoids. Four samples with different levels (from 100% to 3–5%) and composition of carotenoids were obtained by inhibiting the carotenoid biosynthesis in bacteria with diphenylamine. Electrophoresis in polyacrylamide gel showed that after illumination LH2 complex contained all the oxidized bacteriochlorophyll. The carotenoid composition did not change after the oxidation of the main part of bacteriochlorophyll in the LH2 complex. The results suggest that oxidation takes place in the bacteriochlorophyll part, which is essential for the molecule optical properties (the system of double conjugated bonds is changed), but does not influence the stability of the structure of the LH2 complex. 相似文献
19.
The kinetics of absorbance changes related to the charge-separated state, PF, and to the formation and decay of the carotenoid triplet state (CarT) were studied in the LM reaction center subunit isolated from a wild-type strain of the purple bacterium Rhodobacter sphaeroides (strain Y). The PF lifetime is lengthened (20±1.5 ns) in the LM complex as compared to the intact reaction centers (11±1 ns). The yield of the carotenoid triplet formation is higher (0.28±0.01) in the LM complex than in native reaction centers. We interpret our results in terms of perturbations of a first-order reaction connecting the singlet and the triplet state of the radical-pair state. Our results, together with those of a recent work (Agalidis, I., Nuijs, A.M. and Reiss-Husson, F. (1987) Biochim. Biophys. Acta (in press)) are consistent with a high I to QA electron transfer rate in this LM subunit, which is metal-depleted.The LM complex is considerably more sensitive than the reaction centers to photooxidative damage in the presence of oxygen. This is not readily accounted for simply by the higher carotenoid triplet yield, and may suggest a greater accessibility of the internal structures in the absence of the H-subunit.The lifetime of the carotenoid triplet decay (6.4±0.3 s) in the LM subunit is unchanged compared to the native reaction centers.Abbreviations BChl
bacteriochlorophyll
- Bph
bacteriopheophytin
- Car
carotenoid
- Chl
chlorophyll
- cyt
cytochrome
- L, M and H subunits
light, medium and heavy subunits of the reaction center complex
- PR
triplet electronic state of the primary electron donor
- P; QA
the first stable electron acceptor, a bound quinone
- RC
reaction center
- LDAO
lauryldimethylamine N-oxide
- SDS
sodium dodecyl sulfate
- UQ
ubiquinone
This paper is published in our new format. All future authors are requested to follow our new instructions (see Photosynthesis Research 10:519–526, 1986)—Editor. 相似文献
20.
The influence of duration of exposure to actinic light (from 1 sec to 10 min) and temperature (from 3 to 35°C) on the temporary stabilization of the photomobilized electron in the secondary quinone acceptor (QB) locus of Rhodobacter sphaeroides reaction centers (RC) was studied under aerobic or anaerobic conditions. Optical spectrophotometry and ESR methods were used. The stabilization time increased significantly upon increasing the exposure duration under aerobic conditions. The stabilization time decreased under anaerobic conditions, its dependence on light exposure duration being significantly less pronounced. Generation of superoxide radical in photoactivated aerobic samples was revealed by the ESR method. Possible interpretation of the effects is suggested in terms of interaction between the semiquinone QB with oxygen, the interaction efficiency being determined by the conformational transitions in the structure of RC triggered by actinic light on and off. 相似文献