首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparison was undertaken between the effects of ascorbate versus ascorbate plus iron supplementation on DNA damage. Twenty healthy subjects with initial levels of plasma ascorbate of 67.2 +/- 23.3 micromol/l were randomly assigned to and cycled through one of three supplementation regimes: placebo, 260 mg/d ascorbate, 260 mg/d ascorbate plus 14 mg/d iron for 6 weeks separated by 8-week washout periods. Supplementation did not cause a rise in total oxidative DNA damage measured by GC-MS. However, a significant decrease occurred in levels of 8-oxo-7,8-dihydroguanine by ascorbate supplementation and 5-hydroxymethyl uracil by both ascorbate and ascorbate plus iron supplementation, relative to the pre-supplemental levels but not to the placebo group. In addition, levels of 5-hydroxymethyl hydantoin and 5-hydroxy cytosine increased significantly, only relative to pre-supplementation, by ascorbate plus iron treatment. No compelling evidence for a pro-oxidant effect of ascorbate supplementation, in the presence or absence of iron, on DNA base damage was observed.  相似文献   

2.
Oxidative damage, as indicated by protein carbonyl and lipid hydroperoxide concentrations, was assessed in the plasma of college-aged females with adequate iron status and with non-anemic iron deficiency before and after eight weeks of iron supplementation. At baseline, the mean serum ferritin, iron, transferrin saturation, and total iron binding capacity of the iron deficient group (n = 13) was significantly different from the iron adequate controls (n = 24). Mean plasma lipid hydroperoxide and protein carbonyl concentrations did not differ between groups at baseline. Following eight weeks of iron supplementation, the mean serum ferritin, iron, and transferrin saturation significantly increased and the total iron binding capacity significantly decreased in the iron deficient group. No significant differences in plasma lipid hydroperoxide or protein carbonyl concentrations were found between groups at the end of the study period. When plasma lipid hydroperoxide and protein carbonyl concentrations of subjects within groups were compared at the start versus at the end of the study, no significant differences were found for either group. Neither non-anemic iron deficiency nor its treatment with oral iron supplements is associated with oxidative damage in the plasma of college-aged females.  相似文献   

3.
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 +/- 5.3 microM) but not in those with normal baseline ascorbate (51.81 +/- 2.3 microM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant.  相似文献   

4.
An increase in oxidative stress may contribute to the development of diabetic complications. The key aqueous-phase chain-breaking antioxidant ascorbate is known to be deficient in diabetes, and we have therefore investigated the effects of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Markers of lipid peroxidation (malondialdehyde [MDA] and diene conjugates) were increased in plasma and erythrocytes of untreated diabetic animals, and levels of the antioxidants ascorbate and retinol were reduced. Plasma tocopherol was unchanged. Insulin treatment normalized MDA and ascorbate levels, although ascorbate metabolism remained disturbed, as indicated by increased levels of dehydroascorbate. High-dose ascorbate supplementation in the absence of insulin treatment restored plasma ascorbate to normal and increased plasma retinol and tocopherol levels. However, MDA and diene conjugate levels remained unchanged, possibly as a result of increased iron availability. High-dose ascorbate supplementation should be approached with caution in diabetes, as ascorbate may exert both antioxidant and prooxidant effects in vivo.  相似文献   

5.
To assess the effects of short-term and long-term vitamin C supplementation in humans on plasma antioxidant status and resistance to oxidative stress, plasma was obtained from 20 individuals before and 2h after oral administration of 2g of vitamin C, or from eight subjects enrolled in a vitamin C depletion-repletion study using increasing daily doses of vitamin C from 30 to 2500 mg. Plasma concentrations of ascorbate, but not other physiological antioxidants, increased significantly after short-term supplementation, and increased progressively in the long-term study with increasing vitamin C doses of up to 1000 mg/day. Upon incubation of plasma with a free radical initiator, ascorbate concentrations were positively correlated with the lag phase preceding detectable lipid peroxidation. We conclude that vitamin C supplementation in humans dose-dependently increases plasma ascorbate concentrations and, thus, the resistance of plasma to lipid peroxidation ex vivo. Plasma and body saturation with vitamin C in humans appears desirable to maximize antioxidant protection and lower risk of oxidative damage.  相似文献   

6.
M13 DNA was used as a source for single and double-stranded DNA. Free radical-induced damage to single and double stranded DNA was caused by asorbateliron and ascorbate/copper oxidative systems. The degree of breakage was estimated by running samples on an agarose gel and staining with ethidium bromide, followed by photographic analysis. DflA breakage was dependent on time and concentration of iron or copper ions. Zincions protected against damage caused by iron/asorbate both to single-stranded and double-stranded DNA. In contrast, in the copper/ascorbate system zinc ions protected only against the double-stranded DNA (replicative form of M13) breakage, and not against copper-mediated single-stranded DNA breakages. It seemed to amplify the efficiency of breakage. The protection provided to the replicative form in the copper/ascorbate system is much less effective than the protection to DNA in the iron/ascorbate system. These results support the notion that redox-inactive metal ions, that compete for iron or copper binding sites, could provide protection against transition metal-mediated and free radical-induced damage.  相似文献   

7.
《Free radical research》2013,47(1):509-515
M13 DNA was used as a source for single and double-stranded DNA. Free radical-induced damage to single and double stranded DNA was caused by asorbateliron and ascorbate/copper oxidative systems. The degree of breakage was estimated by running samples on an agarose gel and staining with ethidium bromide, followed by photographic analysis. DflA breakage was dependent on time and concentration of iron or copper ions. Zincions protected against damage caused by iron/asorbate both to single-stranded and double-stranded DNA. In contrast, in the copper/ascorbate system zinc ions protected only against the double-stranded DNA (replicative form of M13) breakage, and not against copper-mediated single-stranded DNA breakages. It seemed to amplify the efficiency of breakage. The protection provided to the replicative form in the copper/ascorbate system is much less effective than the protection to DNA in the iron/ascorbate system. These results support the notion that redox-inactive metal ions, that compete for iron or copper binding sites, could provide protection against transition metal-mediated and free radical-induced damage.  相似文献   

8.
Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitaminE, (β-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n=27) was compared to a control group (n=27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90±5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p<0.05) (3.62±0.36 vs 3.01±0.37 mmol/L). No significant changes were observed in plasma trace elements and red blood cell antioxidant metalloenzymes. Furthermore, the α-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.  相似文献   

9.
《Free radical research》2013,47(5):522-528
Abstract

The effect of antioxidant supplementation on biomarkers of oxidative stress was investigated in a 6-week intervention study in 60 overweight men. The supplement contained a combination of antioxidants aiming to correspond to the antioxidant content found in a diet rich in fruit and vegetables. Placebo, single or double dose of antioxidants was provided to the subjects. Metabolic variables, plasma antioxidants and biomarkers of oxidative stress (lipid peroxidation and DNA damage) were measured. No effect of supplementation on biomarkers of oxidative stress was observed. Both intervention groups showed substantial increases of plasma antioxidants. This study demonstrated that supplementation with a combination of antioxidants did not affect lipid peroxidation and DNA damage in overweight men, despite increased concentrations of plasma antioxidants. The absence of antioxidant supplement effect might possibly be explained by the chosen study group having a normal level of oxidative stress, duration of the intervention and/or doses of antioxidants.  相似文献   

10.
A high incidence of cancer has been correlated with chronic iron overload, and carotenoids are of interest as possible anticarcinogens. We have investigated the effect of lycopene on lipid peroxidation and on the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in CV1-P monkey cells exposed to ferric nitrilotriacetate (Fe-NTA) plus ascorbate. Cells supplemented with lycopene (20 pmol/10(6) cells) showed a reduction of 86% in Fe-NTA/ascorbate-induced lipid peroxidation (TBARS). Levels of 8-oxodGuo rose from 1.59+/-0.09 residues/10(6) dGuo in the control cells to 14.02+/-0.41 residues/10(6) dGuo after incubation with (1:4 mM) Fe-NTA/ascorbate (40 microM). Lycopene supplementation decreased in 77% the 8-oxodGuo levels in Fe-NTA/ascorbate-treated cells. These results indicate that lycopene can protect mammalian cells against membrane and DNA damage and possibly play a protective role against tumor promotion associated with oxidative damage.  相似文献   

11.
Ascorbate is a strong antioxidant; however, it can also act as a prooxidant in vitro by reducing transition metals. To investigate the in vivo relevance of this prooxidant activity, we performed a study using guinea pigs fed high or low ascorbate doses with or without prior loading with iron dextran. Iron-loaded animals gained less weight and exhibited increased plasma beta-N-acetyl-D-glucosaminidase activity, a marker of tissue lysosomal membrane damage, compared with control animals. The iron-loaded animals fed the low ascorbate dose had decreased plasma alpha-tocopherol levels and increased plasma levels of triglycerides and F(2)-isoprostanes, specific and sensitive markers of in vivo lipid peroxidation. In contrast, the two groups of animals fed the high ascorbate dose had significantly lower hepatic F(2)-isoprostane levels than the groups fed the low ascorbate dose, irrespective of iron load. These data indicate that 1) ascorbate acts as an antioxidant toward lipids in vivo, even in the presence of iron overload; 2) iron loading per se does not cause oxidative lipid damage but is associated with growth retardation and tissue damage, both of which are not affected by vitamin C; and 3) the combination of iron loading with a low ascorbate status causes additional pathophysiological changes, in particular, increased plasma triglycerides.  相似文献   

12.
Cigarette smoke is widely believed to increase free radical concentrations causing subsequent oxidative processes that lead to DNA damage and hence, to several diseases including lung cancer and atherosclerosis. Vitamin C is a reducing agent that can terminate free-radical-driven oxidation by being converted to a resonance-stabilized free radical. To investigate whether short-term supplementation with the antioxidants vitamin C and E decreases free-radical-driven oxidation and thus decreases DNA damage in smokers, we determined the frequency of micronuclei in lymphocytes in 24 subjects and monitored the electron paramagnetic resonance signal of ascorbate free radical formation in plasma. Further parameters comprised sister-chromatid exchanges and thiobarbituric acid-reactive substances. Twelve smokers and twelve non-smokers took 1000 mg ascorbic acid daily for 7 days and then 1000 mg ascorbic acid and 335.5 mg RRR-α-tocopherol daily for the next 7 days. Baseline concentrations of both vitamins C and E were lower and baseline numbers of micronuclei were higher (p < 0.0001) in smokers than in non-smokers. After 7 days of vitamins C and E, DNA damage as monitored by the number of micronulei was decreased in both, smokers and non-smokers, but it was more decreased in smokers as indicated by fewer micronuclei in peripheral lymphocytes (p < 0.05). Concomitantly, the plasma concentrations of vitamin C (p < 0.001) as well as the ascorbate free radical (p < 0.05) were increased. The corresponding values in non-smokers, however, did not change. Our findings show that increased ascorbate free radical formation in plasma after short-term supplementation with vitamins C and E can decrease the number of micronuclei in blood lymphocytes and thus DNA damage in smokers.  相似文献   

13.
Ascorbate, an intracellular antioxidant, has been considered critical for neuronal protection against oxidant stress, which is supported especially by in vitro studies. Besides, it has been demonstrated an age-related decrease in brain ascorbate levels. The aims of the present study were to investigate ascorbate uptake in hippocampal slices from old Wistar rats, as well as its neuroprotective effects in in vitro and in vivo assays. Hippocampal slices from male Wistar rats aged 4, 11 and 24 months were incubated with radiolabeled ascorbate and incorporated radioactivity was measured. Hippocampal slices from rats were incubated with different concentrations of ascorbate and submitted to H(2)O(2)-induced injury, cellular damage and S100B protein levels were evaluated. The effect of chronic administration of ascorbate on cellular oxidative state and astrocyte biochemical parameters in the hippocampus from 18-months-old Wistar rats was also studied. The ascorbate uptake was decreased in hippocampal slices from old-aged rats, while supplementation with ascorbate (2 weeks) did not modify any tested oxidative status in the hippocampus and the incubation was unable to protect hippocampal slices submitted to oxidative damage (H(2)O(2)) from old rats. Our data suggest that the decline of ascorbate uptake might be involved in the brain greater susceptibility to oxidative damage with advancing age and both in vitro and vivo assays suggest that ascorbate supplementation did not protect hippocampal cells.  相似文献   

14.
Cigarette smoke is widely believed to increase free radical concentrations causing subsequent oxidative processes that lead to DNA damage and hence, to several diseases including lung cancer and atherosclerosis. Vitamin C is a reducing agent that can terminate free-radical-driven oxidation by being converted to a resonance-stabilized free radical. To investigate whether short-term supplementation with the antioxidants vitamin C and E decreases free-radical-driven oxidation and thus decreases DNA damage in smokers, we determined the frequency of micronuclei in lymphocytes in 24 subjects and monitored the electron paramagnetic resonance signal of ascorbate free radical formation in plasma. Further parameters comprised sister-chromatid exchanges and thiobarbituric acid-reactive substances. Twelve smokers and twelve non-smokers took 1000 mg ascorbic acid daily for 7 days and then 1000 mg ascorbic acid and 335.5 mg RRR-alpha-tocopherol daily for the next 7 days. Baseline concentrations of both vitamins C and E were lower and baseline numbers of micronuclei were higher (p < 0.0001) in smokers than in non-smokers. After 7 days of vitamins C and E, DNA damage as monitored by the number of micronulei was decreased in both, smokers and non-smokers, but it was more decreased in smokers as indicated by fewer micronuclei in peripheral lymphocytes (p < 0.05). Concomitantly, the plasma concentrations of vitamin C (p < 0.001) as well as the ascorbate free radical (p < 0.05) were increased. The corresponding values in non-smokers, however, did not change. Our findings show that increased ascorbate free radical formation in plasma after short-term supplementation with vitamins C and E can decrease the number of micronuclei in blood lymphocytes and thus DNA damage in smokers.  相似文献   

15.
The mechanism of ascorbate oxidation by metal-binding proteins (ceruloplasmin, albumin and transferrin) was investigated in vitro and in isolated plasma by the measurement of the ascorbyl free radicals (AFR) by electron spin resonance (ESR). In plasma of 13 healthy volunteers, a spontaneous and variable pro-duction of AFR was detected, which was increased by a 10 M ascorbate overloading; however, this increase was not correlated to the intensity of the spontaneous AFR signal. The addition of Cu and ceruloplasmin to plasma increased the ESR signal, while the addition of transferrin decreased the signal intensity in a dose-dependent manner. In vitro, we demonstrated that ascorbate was oxidized by human serum albumin and by ceruloplasmin, and that this oxidase-like activity was lost by trypsin or heat treatment of these proteins. These two proteins positively interacted in the oxidation of ascorbate, since addition of crude albumin to a solution of ascorbate and ceruloplasmin increased the intensity of ESR signal in a dose-dependent manner. The treatment of albumin by a metal chelator (DDTC) abolished these positive inter-actions. The respective roles of copper and iron in ascorbate oxidation were studied and showed a dose-dependent effect of these ions on ascorbate oxidation. The role of iron was confirmed by the inhibiting effect of metal-free transferrin on iron-dependent ascorbate oxidation. Concerted actions between iron carrying albumin and copper carrying ceruloplasmin appear responsible for the production of AFR in vitro and in vivo. © Rapid Science 1998  相似文献   

16.
Haemoglobin initiates free radical chemistry. In particular, the interactions of peroxides with the ferric (met) species of haemoglobin generate two strong oxidants: ferryl iron and a protein-bound free radical. We have studied the endogenous defences to this reactive chemistry in a rabbit model following 20% exchange transfusion with cell-free haemoglobin stabilized in tetrameric form [via cross-linking with bis-(3,5-dibromosalicyl)fumarate]. The transfusate contained 95% oxyhaemoglobin, 5% methaemoglobin and 25 microM free iron. EPR spectroscopy revealed that the free iron in the transfusate was rendered redox inactive by rapid binding to transferrin. Methaemoglobin was reduced to oxyhaemoglobin by a slower process (t(1/2) = 1 h). No globin-bound free radicals were detected in the plasma. These redox defences could be fully attributed to a novel multifunctional role of plasma ascorbate in removing key precursors of oxidative damage. Ascorbate is able to effectively reduce plasma methaemoglobin, ferryl haemoglobin and globin radicals. The ascorbyl free radicals formed are efficiently re-reduced by the erythrocyte membrane-bound reductase (which itself uses intra-erythrocyte ascorbate as an electron donor). As well as relating to the toxicity of haemoglobin-based oxygen carriers, these findings have implications for situations where haem proteins exist outside the protective cell environment, e.g. haemolytic anaemias, subarachnoid haemorrhage, rhabdomyolysis.  相似文献   

17.
Reactive oxygen species and reactive nitrogen species are formed in the human body. Endogenous antioxidant defences are inadequate to scavenge them completely, so that ongoing oxidative damage to DNA, lipids, proteins and other molecules can be demonstrated and may contribute to the development of cancer, cardiovascular disease and possibly neurodegenerative disease. Hence diet-derived antioxidants may be particularly important in protecting against these diseases. Some antioxidants (e.g. ascorbate, certain flavonoids) can exert pro-oxidant actions in vitro, often by interaction with transition metal ions. The physiological relevance of these effects is uncertain, as is the optimal intake of most diet-derived antioxidants. In principle, these questions could be addressed by examining the effects of dietary composition and/or antioxidant supplementation upon parameters of oxidative damage in vivo. The methods available for measuring steady-state damage (i.e. the balance between damage and repair or replacement of damaged molecules) and the actual rate of damage to DNA, proteins and lipids are reviewed, highlighting areas in which further methodological development is urgently required.  相似文献   

18.
Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at > or = 2 mg/ml to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 micromol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p < 0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio = 2.4) also decreased from 0.726 to 0.696 and 0.585mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p < 0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.  相似文献   

19.
Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res 25(12): 3448-3455, 2011-Creatine (Cr), or methyl guanidine-acetic acid, can be either ingested from exogenous sources, such as fish or meat, or produced endogenously by the body, primarily in the liver. It is used as an ergogenic aid to improve muscle mass, strength, and endurance. Heretofore, Cr's positive therapeutic benefits in various oxidative stress-associated diseases have been reported in the literature and, recently, Cr has also been shown to exert direct antioxidant effects. Therefore, the purpose of this study was to investigate the effects of an acute bout of resistance exercise (RE) on oxidative stress response and oxidative DNA damage in male athletes and whether supplementation with Cr could negate any observed differences. Twenty-seven resistance-trained men were randomly divided into a Cr supplementation group (the Cr group [21.6 ± 3.6 years], taking 4 × 5 g Cr monohydrate per day) or a placebo (PL) supplementation group (the PL group [21.2 ± 3.2 years], taking 4 × 5 g maltodextrin per day). A double-blind research design was employed for a 7-day supplementation period. Before and after the seventh day of supplementation, the subjects performed an RE protocol (7 sets of 4 exercises using 60-90 1 repetition maximum) in the flat pyramid loading pattern. Blood and urine samples taken before, immediately, and 24-hour postexercise were analyzed for plasma malondialdehyde (MDA) and urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion. Before the supplementation period, a significant increase in the urinary 8-OHdG excretion and plasma MDA levels was observed after RE. The Cr supplementation induces a significant increase in athletics performance, and it attenuated the changes observed in the urinary 8-OHdG excretion and plasma MDA. These results indicate that Cr supplementation reduced oxidative DNA damage and lipid peroxidation induced by a single bout of RE.  相似文献   

20.
Vitamin E and carotenoids are known to act as antioxidants both in vitro and in vivo. In this review we present a series of studies in healthy subjects and in patients who exhibit either acute or chronic oxidative stress. In the EU-Commission funded VITAGE project we investigated the status and effects of vitamin E and carotenoids on oxidative stress in 300 healthy volunteers. Depletion studies limiting dietary vitamin E or carotenoid intake to 25% of the dietary reference intakes and subsequent repletion by supplementation with either large doses of vitamin E or intermediate doses of carotenoids showed significant changes in ex vivo LDL oxidizability, total plasma peroxide concentrations and urinary 8-oxo-7,8-dihydro-2-deoxyguanosine excretion. Patients on chronic hemodialysis present with oxidative stress in the presence of normal vitamin E but impaired vitamin C status and, due to anemia, need to be treated with parenteral iron. We studied the effects of a single oral dose of vitamin E taken 6 h prior to intravenous infusion of 100 mg iron, which exceeded the iron-binding capacity of transferrin. Vitamin E significantly reduced and in combination with a single dose of vitamin C completely abrogated acute oxidative stress induced by the iron load. Patients with cystic fibrosis are exposed to chronic oxidative stress due to an overproduction of reactive oxygen species as a result of neutrophil-dominated lung inflammation and impaired antioxidant status. Biochemical vitamin E and carotenoid deficiencies could be fully corrected even in the presence of fat malabsorption using intermediate doses of either RRR -tocopherol or all-rac -tocopheryl acetate and water-miscible all-trans β-carotene. Long-term supplementation reduced ex vivo LDL oxidizability, in vivo lipid peroxidation and lung inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号