首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macromolecular assemblies containing multiple protein subunits and having masses in the megadalton (MDa) range are involved in most of the functions of a living cell. Because of variation in the number and masses of subunits, macromolecular assemblies do not have a unique mass, but rather a mass distribution. The giant extracelular erythrocruorins (Ers), ∼ 3.5 MDa, comprized of at least 180 polypeptide chains, are one of the best characterized assemblies. Three-dimensional reconstructions from cryoelectron microscopic images show them to be hexagonal bilayer complexes of 12 subassemblies, each comprised of 12 globin chains, anchored to a subassembly of 36 nonglobin linker chains. We have calculated the most probable mass distributions forLumbricus andRiftia assemblies and their globin and linker subassemblies, based on theLumbricus Er stoichiometry and using accurate subunit masses obtained by electrospray ionization mass spectrometry. The expected masses ofLumbricus andRiftia Ers are 3.517 MDa and 3.284 MDa, respectively, with a possible variation of ∼ 9% due to the breadth of the mass distributions. TheLumbricus Er mass is in astonishingly good agreement with the mean of 23 known masses, 3.524 ± 0.481 MDa.  相似文献   

2.
Tandem mass spectrometry is a method of choice for rapid analysis in proteomics. Identification and characterization of proteins from organisms with sequenced genomes is today a routine procedure as will be identification of proteins from organisms with unsequenced genomes with new developing tools. Here, we report the use of isotopic labeling with electrospray ionisation (ESI)-tandem mass spectrometry for de novo sequencing in combination with database search taking advantage of different programs for identification of fungal proteins. Using this approach we could identify the proteins of interest. Nevertheless, the identification of a novel protein responsible for the conversion of testosterone into androstenedione was still a difficult task, mostly due to the low homology of steroid transforming enzymes, especially those from microorganisms. Protein p27 was identified as the vanillate O-demethylase oxidoreductase, p33 and p36 as two isoenzymes of malate dehydrogenase, and p45 as citrate synthase. By rechecking the sequences using additional programs it could be shown that the protein p36 has a higher local homology to the steroid-transforming enzyme than to the malate dehydrogenase. Therefore, we assume that p36 is a pluripotent enzyme most probably responsible for the 17beta-hydroxysteroid dehydrogenase activity.  相似文献   

3.
Electrospray mass spectrometry (ESMS) has been used to investigate the relative ligand properties of the triphenylpnictogen ligands EPh3 (E=P, As, Sb and Bi) towards silver(I) and copper(I) ions. It is found that the preferred species formed increase in coordination number from two for PPh3 in [Ag(PPh3)2]+ to four for SbPh3 in [Ag(SbPh3)4]+, consistent with the decreasing donor ligand ability and increasing metal –E bond length in the series PPh3–AsPh3–SbPh3. With BiPh3, the spectra were complex, suggesting considerable decomposition. These studies also suggest that silver(I) and copper(I) ions will have widespread utility in the characterisation of tertiary stibine ligands, as has been described previously for phosphines and arsines. These studies demonstrate the power of the ESMS technique in determining the donor properties of a related series of ligands, and this information is of significance in coordination chemistry.  相似文献   

4.
Two series of oxovanadium(IV) salen and salpn complexes containing 4-substituted alkoxy chains of aromatic rings, [VO((4-CnH2n+1O)2salen)] (n = 3 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8), 18 (9), and 20 (10) and salen = N,N′-ethylenebis(salicylideneiminato)), and [VO((4-CnH2n+1O)2salpn)] (n = 8 (11), 10 (12), 12 (13), 14 (14), 16 (15), and 18 (16) and salpn = N,N′-propylenebis(salicylideneiminato)), have been prepared and their mesomorphic properties have been investigated. The crystal structures of 1-9 except for 7 by an X-ray crystallographic analysis have been revealed. Complexes 4-9 in the solid state have been confirmed as novel bilayer crystal structures composed of only the VO(IV) complex without linear chains via the VO units. The VO(IV) complexes with longer alkoxy chains of 8-10 transferred from the bilayer crystal to the bilayer metallomesogens (liquid crystals). Based on the X-ray analyses and the precise extinction rules for 8-10 with the bilayer metallomesogens, complexes 8-10 were identified as the liquid crystalline (M(Pa21)) phase derived from 80 layer groups. On the other hand, the 4-alkoxysalpn complexes of 14-16 showed the unusual rectangular columnar mesophase (Colr) with the linear chain via the VO units supported by the existence of the VO stretching band characteristic of weak linear chain formation via the VO units in the liquid crystal.  相似文献   

5.
In Escherichia coli, the IclR protein regulates both the aceBAK operon and its own synthesis. Database homology searches have identified many IclR-like proteins, now known as the IclR family, which can be identified by a conserved C-terminal region. We have cloned and purified one of these proteins, which we have named GclR (glyoxylate carboligase repressor). Although purification is straightforward, both the IclR and GclR proteins are difficult to manipulate, requiring high salt (up to 0.6 M KCl) for solubility. With the advent of nanospray ionization, we could transfer the proteins into much higher concentrations of volatile buffer than had been practical with ordinary electrospray. In 0.5 M ammonium bicarbonate buffer, both proteins were stable as tetramers, with a small amount of dimer. In a separate experiment, we found that IclR protein selected from a random pool a sequence which matched exactly that of the presumed binding region of the GclR protein, although IclR does not regulate the gcl gene. We designed a 29 bp synthetic DNA to which IclR and GclR bind, and with which we were able to form noncovalent DNA-protein complexes for further mass spectrometry analysis. These complexes were far more stable than the proteins alone, and we have evidence of a stoichiometry which has not been described previously with (protein monomer : dsDNA) = (4 : 1).  相似文献   

6.
Summary A crude protein extract of Bacillus subtilis W23 contains a sequence-specific DNA binding activity for the xyl operator as detected by the gel mobility shift assay. A xylR determinant encoded on a multicopy plasmid leads to increased expression of this binding activity. In situ footprinting analysis of the protein-DNA complex in a polyacrylamide gel shows that the xyl operator is sequence-specifically bound and protected from cleavage by copper-phenanthroline at 26 phosphodiester bonds on each strand. Quantitative competition assays for repressor binding reveal that a 25 by synthetic xyl operator cloned into a polylinker is bound with the same affinity as the operator in the wild-type xyl regulatory region. This confirms that no additional sites in the wild-type sequence contribute to repressor binding. The xyl operator consists of ten palindromic base pairs flanking five central non-palindromic base pairs. A mutational analysis shows that the sequence of the central base pairs contributes to recognition by the repressor protein and that the spacing of the palindromic elements is crucial for repressor binding. An operator half site is not bound by the repressor. In vivo and in vitro induction studies suggest that, of several structurally similar sugars, xylose is the only molecular inducer of the Xyl repressor.  相似文献   

7.
In this work, mercury-resistant bacterial strains were isolated from the rhizosphere of an apple orchard, growing in a soil with high levels of mercury (Nuevo San Joaquin, Queretaro State, Mexico). Analysis of the soil in this region by the Cold Vapor Atomic Absortion Spectroscopy method showed that it contained 637 ± 51 mg mercury per kg. Mercury accumulation by fresh apples from this orchard amounted to 15.44 ± 4.33 mg/kg. The bacterial isolates were identified by application of proteomic technique of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). They were found to be strains of Bacillus muralis and Bacillus simplex. All strains showed the ability to catalyze the volatilization of Hg as measured via the nonradioactive X-ray method. In all strains merR and merA genes were detected by polymerase chain reaction. Nucleotide sequence analysis showed that merR from B. simplex was 435 bp in length and that its sequence was similar to merR sequences reported for other bacteria such as Cupriavidus, Ralstonia, Pseudomonas and Serratia. To our knowledge, this is the first report of mercury-resistant Bacillus strains isolated from the rhizosphere of an apple orchard and the first merR gene sequence from such Bacilli.  相似文献   

8.
The rise of drug-resistant bacterial infections coupled with decreasing antibiotic efficacy poses a significant challenge to global health care. Acinetobacter baumannii is an insidious, emerging bacterial pathogen responsible for severe nosocomial infections aided by its ability to form biofilms. The response regulator BfmR, from the BfmR/S two-component system, is the master regulator of biofilm initiation in A. baumannii and is a tractable therapeutic target. Here we present the structure of A. baumannii BfmR using a hybrid approach combining X-ray crystallography, nuclear magnetic resonance spectroscopy, chemical crosslinking mass spectrometry, and molecular modeling. We also show that BfmR binds the previously proposed bfmRS promoter sequence with moderate affinity. While BfmR shares many traits with other OmpR/PhoB family response regulators, some unusual properties were observed.Most importantly, we observe that when phosphorylated, BfmR binds this promoter sequence with a lower affinity than when not phosphorylated. All other OmpR/PhoB family members studied to date show an increase in DNA-binding affinity upon phosphorylation. Understanding the structural and biochemical mechanisms of BfmR will aid in the development of new antimicrobial therapies.  相似文献   

9.
The mass spectrometric analysis of the immunodominant epitope region (273-284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273-284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography-mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis.  相似文献   

10.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of nickel(II) complexes has been probed using electrospray ionisation mass spectrometry coupled with synthesis and characterisation in selected systems. Reaction of [Pt2(μ-S)2(PPh3)4] with [Ni(NCS)2(PPh3)2] gives [Pt2(μ-S)2(PPh3)4Ni(NCS)(PPh3)]+, isolated as its BPh4 − salt; the same product is obtained in the reaction of [Pt2(μ-S)2(PPh3)4] with [NiBr2(PPh3)2] and KNCS. An X-ray structure determination reveals the expected sulfide-bridged structure, with an N-bonded thiocyanate ligand and a square-planar coordination geometry about nickel. A range of nickel(II) complexes NiL2, containing β-diketonate, 8-hydroxyquinolinate, or salicylaldehyde oximate ligands react similarly, giving [Pt2(μ-S)2(PPh3)4NiL]+ cations.  相似文献   

11.
We have recently detected that the lipase from Streptomyces rimosus belongs to a large but poorly characterised family of SGNH hydrolases having the αβα-fold. Our biochemical characterisation relates to the specific inhibition of an extracellular lipase from Streptomyces rimosus (SRL, 24.2 kDa, Q93MW7) by the preincubation method with tetrahydrolipstatin (THL). In high molar excess (THL/SRL = 590 at 25 °C, pH = 7.0) and after 2 h of incubation in an aqueous system, 56% of the enzyme inhibition was reached. Under the same conditions and in the presence of 50% (v/v) 2-propanol/water, 71% enzyme inhibition was obtained. Kinetic measurements are in agreement with pseudo-first-order kinetics. The nucleophilic attack of the catalytic serine residue 10 of SRL occurs via an opening of the β-lactone ring of tetrahydrolipstatin and formation of a covalent ester bond. The intact covalent complex of SRL-inhibitor was analysed by ESI and vacuum MALDI mass spectrometry and, furthermore, the exact covalent THL linkage was determined by vacuum MALDI high-energy collision-induced dissociation tandem mass spectrometry.  相似文献   

12.
13.
DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ′ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ–SSB4 (108 kDa) and the clamp loader–SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~ 10%) of the clamp loader–SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader–SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance.  相似文献   

14.
The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components. The seeds of Descurainia sophia (SDS) are utilized in China as a cough and asthma relieving agent. Herein, a dimension-enhanced integral approach, by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and intelligent peak annotation, was developed to rapidly characterize the multicomponents from SDS. Good chromatographic separation was achieved within 38 min on a UPLC CSH C18 (2.1 × 100 mm, 1.7 μm) column which was eluted by 0.1% formic acid in water (water phase) and acetonitrile (organic phase). Collision-induced dissociation-MS2 data were acquired by the data-independent high-definition MSE (HDMSE) in both the negative and positive electrospray ionization modes. A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume. Moreover, a self-built chemistry library was established, which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMSE data. As a result of applying the intelligent peak annotation workflows and further confirmation process, a total of 53 compounds were identified or tentatively characterized from the SDS, including 29 flavonoids, one uridine derivative, four glucosides, one lignin, one phenolic compound, and 17 others. Notably, four-dimensional information related to the structure (e.g., retention time, collision cross section, MS1 and MS2 data) was obtained for each component by the developed integral approach, and the results would greatly benefit the quality control of SDS.  相似文献   

15.
Herbal components characterization represents a challenging task because of the co-existing of multiple classes of naturally occurring compounds with wide spans of polarity, molecular mass, and the ubiquitous isomerism. The root and rhizome of Salvia miltiorrhiza have been utilized as a reputable traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Dan-Shen) in the treatment of cardiovascular disease. Herein, a dimension-enhanced ultra-high performance liquid chromatography/ion mobility/quadrupole time-of-flight mass spectrometry approach in combination with intelligent peak annotation workflows was established aimed to rapidly characterize the multicomponents from S. miltiorrhiza. Due to the sufficient optimization, satisfactory chromatography separation was enabled on an HSS T3 column within 33 min using 0.1% formic acid in water (A) and acetonitrile (B) as the mobile phase, while the data-independent HDMSE in both the negative and positive electrospray ionization modes was utilized for the high-coverage MS2 data acquisition. Streamlined automatic peak annotation by searching an in-house library (recording 198 known compounds) followed by the subsequent confirming steps (e.g., comparison with the reference compounds, fragmentation pathways analysis, and retention behavior comparison, etc.), allowed us to identify or tentatively characterize a total of 86 components (including 50 terpenoids, 21 phenolic acids, and 15 others) from S. miltiorrhiza. Importantly, three-dimensional structure information, such as the retention time, MS1 and MS2 data, and collision cross section (CCS), was provided, which can facilitate the more reliable characterization of herbal components.  相似文献   

16.
The intracellular ileal lipid binding proteins (ILBPs) are involved in the transport and enterohepatic circulation of bile acids. ILBPs from different species show high sequence and structural homology and have been shown to bind multiple bile acid ligands with differing degrees of selectivity and positive co-operativity. Human ILBP binds bile acid derivatives in a well-characterised 2:1 ligand:protein complex, however, we show that the highly homologous rabbit ILBP (82% sequence identity) with seven conservative substitutions preferentially binds multiple conjugated deoxycholate ligands in a novel 3:1 binding mode essentially within the same beta-clam shell structure. We have extended these studies to investigate the role of the alpha-helical capping motif (residues 9-35) in controlling the dimensions of the binding cavity and ligand uptake. Substituting the alpha-helical motif (residues 9-35) with a short Gly-Gly-Ser-Gly linker dramatically affects the protein stability such that under physiological conditions the mutant (Deltaalpha-ILBP) is highly disordered. However, we show that the inability of the mutant to adopt a stable three-dimensional structure under these conditions is no barrier to binding ligands with near-native affinity. These structural modifications not only demonstrate the possibility of strong coupling between ligand binding and protein folding, but result in changes in bile acid selectivity and binding stoichiometry, which we characterise in detail using isothermal calorimetry and mass spectrometry.  相似文献   

17.
Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer.  相似文献   

18.
19.
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号