首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
2.
Zhang S  Liu Y 《The Plant cell》2001,13(8):1877-1889
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2(DD), in tobacco induces the expression of defense genes and hypersensitive response-like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response-like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

3.
4.
When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.g. MAPK (mitogen-activated protein kinase), are known to be translocated into the nucleus. In the present study, we investigated the ability of cryptogein, a proteinaceous elicitor of tobacco defence reactions, to induce different nuclear protein kinase activities. We found that at least four nuclear protein kinases are activated in response to cryptogein treatment in a time-dependent manner, some of them exhibiting Ca(2+)-dependent activity. The present study focused on one 47 kDa protein kinase with a Ca(2+)-independent activity, closely related to the MAPK family. After purification and microsequencing, this protein kinase was formally identified as SIPK (salicyclic acid-induced protein kinase), a biotic and abiotic stress-activated MAPK of tobacco. We also showed that cytosolic activation of SIPK is not sufficient to promote a nuclear SIPK activity, the latter being correlated with cell death. In that way, the present study provides evidence of a functional nuclear MAPK activity involved in response to an elicitor treatment.  相似文献   

5.
The active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein-protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2DD expression by dexamethasone induced HR-like cell death in both T1 and T2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2-SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2-SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death.  相似文献   

6.
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2DD, in tobacco induces the expression of defense genes and hypersensitive response–like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid–induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response–like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade.  相似文献   

8.
MAP kinase cascades in elicitor signal transduction   总被引:3,自引:0,他引:3  
 Protein kinases play important roles in elicitor signal transduction. In this article, I describe the current view of the role of mitogen-activated protein kinase (MAPK) cascades in elicitor signal transduction of plant cells based on our own research and recent developments in this field. In the past several years, it has become apparent that MAPK cascades play important roles in elicitor signal transduction in plants. Our early studies demonstrated the identification of p47 MAPK in tobacco as an elicitor-responsive protein kinase and possible involvement of p47 MAPK in elicitor signal transduction to induce defense responses, including defense gene expression and hypersensitive cell death. However, the molecular identity of p47 MAPK is still unclear. Recent important studies suggest that tobacco MAPK cascades that include SIPK, and/or WIPK, and NtMEK2, an upstream kinase for both SIPK and WIPK, have a crucial function in induction of defense responses and hypersensitive cell death. The orthologs of these protein kinases in Arabidopsis and alfalfa are also suggested to have similar functions. Furthermore, the identification of loss-of-function mutation in Arabidopsis reveals a negative regulatory role for putative MAPK cascades in plant defense mechanisms. Received: February 7, 2002 / Accepted: February 25, 2002  相似文献   

9.
Abstract : In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AβPP) by the α-secretase pathway within the βA4 domain to generate a soluble secreted N-terminal fragment (AβPPs). AβPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform β1 and novel PKCε from cytosol to membrane fractions, but there was no alteration in the proportion of AβPP associated with the Tritonsoluble and -insoluble fractions. AβPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AβPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 μ M ), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AβPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the α-secretase activity leading to the secretion of AβPPs can occur at the level of the presynaptic terminal.  相似文献   

10.
In tobacco, two mitogen-activated protein (MAP) kinases, designated salicylic acid (SA)-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK) are activated in a disease resistance-specific manner following pathogen infection or elicitor treatment. To investigate whether nitric oxide (NO), SA, ethylene, or jasmonic acid (JA) are involved in this phenomenon, the ability of these defense signals to activate these kinases was assessed. Both NO and SA activated SIPK; however, they did not activate WIPK. Additional analyses with transgenic NahG tobacco revealed that SA is required for the NO-mediated induction of SIPK. Neither JA nor ethylene activated SIPK or WIPK. Thus, SIPK may function downstream of SA in the NO signaling pathway for defense responses, while the signals responsible for resistance-associated WIPK activation have yet to be determined.  相似文献   

11.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

12.
Abstract: Phosphorylation of brain spectrin was studied by a combination of in vivo and in vitro approaches. Chemical analysis of phosphate groups on electrophoretically purified mouse brain β-spectrin yielded a stoichiometry of 3.2 ± 0.18 mol of PO4/mol of β-spectrin. The spectrin isolated by chromatographic methods from mouse brain, pig brain, and human erythrocytes yielded 4.1, 5.6, and 3.2 mol of PO4/mol of spectrin heterodimer, respectively. The 32P labeling of spectrin in retinal ganglion cell neurons or NB 2a/d1 neuroblastoma cells with [32P]orthophosphate showed phosphorylation of only β-spectrin in vivo. Two-dimensional phosphopeptide map analyses showed that most of the in vivo sites on β-spectrin were phosphorylated by either a heparin-sensitive endogenous cytoskeleton-associated protein kinase or protein kinase A. Phosphoamino acid analysis of in vivo and in vitro phosphorylated β-spectrin showed that [32P]phosphate groups were incorporated into both serine (>90%) and threonine residues. In vitro, phosphate groups were incorporated into threonine residues by the heparin-sensitive endogenous protein kinase. The amino acid sequence VQQQLQAFNTY of an α-chymotryptic 32P-labeled peptide phosphorylated by the heparin-sensitive cytoskeleton-associated endogenous protein kinase corresponded to amino acid residues 338–348 on the β1 repeat of β-spectrinG (βSPIIa) gene. These data suggest that phosphorylation of Thr347, which is localized on the presumptive synapsin I binding domain of β-spectrinG, may play a role in synaptic function by regulating the binding of spectrin to synaptic vesicles.  相似文献   

13.
Two protein kinases displaying mitogen-activated protein kinase (MAPK) properties are activated both by an hypoosmotic stress and by oligogalacturonides in tobacco cell suspensions [Cazalé et al. (1999) Plant J. 19, 297-307]. Using specific antibodies, they were identified as the salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK). The SIPK was also activated by an hyperosmotic stress, indicating that the same kinase may play a role both in hypo- and hyperosmotic signalling pathways, in addition to its involvement in the transduction of elicitor signals. Using immunoprecipitation followed by two-dimensional in-gel kinase assay, three molecular forms of the SIPK were observed, suggesting that additional modifications of the activated kinase may occur. In contrast to WIPK and SIPK, which are located at the crossroad of several transduction pathways initiated by elicitor or osmotic stimuli, a 44 kDa kinase, that would not belong to the MAPK family, appeared more specific to osmotic stress.  相似文献   

14.
Borrelia hermsii , a spirochaete responsible for relapsing fever in humans, grows to high density in the bloodstream and causes thrombocytopenia. We show here that B. hermsii binds to human platelets. Extended culture in bacteriological medium resulted in both diminished infectivity in vivo and diminished platelet binding in vitro . Platelet binding was promoted by the platelet integrin αIIbβ3: the bacterium bound to purified integrin αIIbβ3, and bacterial binding to platelets was diminished by αIIbβ3 antagonists or by a genetic defect in this integrin. Integrin αIIbβ3 undergoes a conformational change upon platelet activation, and bacteria bound more efficiently to activated rather than resting platelets. Nevertheless, B. hermsii bound at detectable levels to preparations of resting platelets. The bacterium did not recognize a point mutant of αIIbβ3 that cannot acquire an active conformation. Rather, B. hermsii was capable of triggering platelet and integrin αIIbβ3 activation, as indicated by the expression of the platelet activation marker P-selectin and integrin αIIbβ3 in its active conformation. The degree of platelet activation varied depending upon bacterial strain and growth conditions. Prostacyclin I2, an inhibitor of platelet activation, diminished bacterial attachment, indicating that activation enhanced bacterial binding. Thus, B. hermsii signals the host cell to activate a critical receptor for the bacterium, thereby promoting high-level bacterial attachment.  相似文献   

15.
Abstract: Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; α-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 μM noradrenaline is mediated by β-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 m M K+ or 100 μ M veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A halfmaximal activation of phosphorylase occurs at about 12 m M K+. Addition of EGTA or LaCl3, reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.  相似文献   

16.
S Zhang  H Du    D F Klessig 《The Plant cell》1998,10(3):435-450
Two purified proteinaceous fungal elicitors, parasiticein (an alpha elicitin) and cryptogein (a beta elicitin), as well as a fungal cell wall-derived carbohydrate elicitor all rapidly activated a 48-kD kinase in tobacco suspension cells. The maximum activation of this kinase paralleled or preceded medium alkalization and activation of the defense gene phenylalanine ammonia-lyase (PAL). In addition, the two elicitins, which also induced hypersensitive cell death, activated a 44- and a 40-kD kinase with delayed kinetics. By contrast, the cell wall-derived elicitor only weakly activated the 44-kD kinase and failed to activate the 40-kD kinase. The size and substrate preference of the 48-kD kinase are reminiscent of the recently purified and cloned salicylic acid-induced protein (SIP) kinase, which is a member of the mitogen-activated protein kinase family. Antibodies raised against a peptide corresponding to the unique N terminus of SIP kinase immunoreacted with the 48-kD kinase activated by all three elicitors from Phytophthora spp. In addition, the cell wall elicitor and the salicylic acid-activated 48-kD kinase copurified through several chromatography steps and comigrated on two-dimensional gels. Based on these results, all three fungal elicitors appear to activate the SIP kinase. In addition, inhibition of SIP kinase activation by kinase inhibitors correlated with the suppression of cell wall elicitor-induced medium alkalization and PAL gene activation, suggesting a regulatory function for the SIP kinase in these defense responses.  相似文献   

17.
Ozone-induced oxidative stress: Mechanisms of action and reaction   总被引:27,自引:0,他引:27  
In this review we explore several models which might explain ozone (O3)-induced injury to plant foliage. Ozone enters the cell through the wall and plasma membrane where active oxygen species are generated. If the concentration of O3 is very high, unregulated cell death will occur. Alternatively, the active oxygen species, or succeeding reaction products, may serve as elicitors of regulated plant responses. These regulated responses include the induction of ethylene which could serve as a primary signal for—or a facilitator of—subsequent responses. The role of regulated suppression of photosynthetic genes and induction of chitinases and β-1,3-glucanase in programmed cell death is explored. Induction of antioxidants, enzymes of lignification and glutathione- S -transferase are discussed in the context of O3-induced cell repair or cell protection. A second model is postulated to explain induction of accelerated foliar senescence by low levels of O3. The notion that O3-induced elicitation of responses in the nucleus might lead to increased oxidative stress in the chloroplast is considered as a mechanism for accelerating the rate of degradation of ribulose-1,5-bisphosphate car-boxylase/oxygenase (Rubisco). The mechanisms by which O3 induces loss of Rubisco, and the relationship to accelerated foliar senescence are discussed.  相似文献   

18.
19.
F-spondin is associated with the regulation of axonal growth and the development of the nervous system. Its mechanism of action, however, is not clearly understood. In this study, we found that murine neuroblastoma Neuro-2a cells expressed a significant level of IL-6, but only trace amounts of IL-12, tumor necrosis factor α and nitric oxide. Knock-down of F-spondin mRNA in murine neuroblastoma NB41A3 and Neuro-2a cells using small interfering RNAs led to decreased IL-6 levels along with lower resistance to serum starvation and cytotoxic amyloid β1–42 (Aβ1–42) peptide. Restoring decline of F-spondin or IL-6 induced by F-spondin knock-down through adding exogenous F-spondin, IL-6 or over-expressing F-spondin reversed the cell death induced by Aβ1–42 peptide or serum starvation. The decrease of IL-6 level was positively correlated with decrease of NF-κB and inhibition of p38 mitogen-activated protein kinase (MAPK). Over-expressing MEKK, a kinase activator of the p38 MAPK pathway, increased IL-6 production, restored the decrease of p38 induced by F-spondin knock-down, and rescued the cells from death caused by Aβ1–42 peptide. Taken together, these results suggest that F-spondin may play a critical role in murine neuroblastoma survival under adverse conditions by maintaining IL-6 level via a MEKK/p38 MAPK/NF-κB-dependent pathway.  相似文献   

20.
Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) β1b or β2a subunits, but not with the β3 or β4 subunits ( Grueter et al. 2008 ). CaMKII-dependent facilitation of CaV1.2 LTCCs requires Thr498 phosphorylation in the β2a subunit ( Grueter et al. 2006 ), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain CaV1.2α1 and β1 or β2 subunits, but is not detected in LTCC complexes containing β4 subunits. CaMKIIα can be specifically tethered to the I/II linker of CaV1.2 α1 subunits in vitro by the β1b or β2a subunits. Efficient targeting of CaMKIIα to the full-length CaV1.2α1 subunit in transfected HEK293 cells requires CaMKII binding to the β2a subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of β2a at Thr498 within the LTCC complex, without altering overall phosphorylation of CaV1.2α1 and β subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号