首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine-rich (SR) protein family is involved in the pre-mRNA splicing process and the DNA sequences of the corresponding genes are highly conserved in the metazoan organisms. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD and a RS (arginine/serine-rich) domain. We used the amino acid and nucleotide sequences deposited in GenBank and Swiss-Prot databases to perform a phylogenetic analysis using bioinformatics tools. The results of the phylogenetic trees suggest that this family has evolved by several gene duplication events as a result of a positive selection mechanism.  相似文献   

2.
3.
SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.  相似文献   

4.
5.
We have characterized two RNA-binding proteins, of apparent molecular masses of approximately 40 and 35 kDa, which possess a single N-terminal RNA-recognition motif (RRM) followed by a C-terminal domain rich in serine-arginine dipeptides. Their primary structures resemble the single-RRM serine-arginine (SR) protein, SC35; however their functional effects are quite distinctive. The 40-kDa protein cannot complement SR protein-deficient HeLa cell S100 extract and showed a dominant negative effect in vitro against the authentic SR proteins, SF2/ASF and SC35. Interestingly, the 40- and 35-kDa proteins antagonize SR proteins and activate the most distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo, an activity that is similar to that characterized previously for the heterogeneous nuclear ribonucleoprotein particles A/B group of proteins. A series of recombinant chimeric proteins consisting of domains from these proteins and SC35 in various combinations showed that the RRM, but not the C-terminal domain rich in serine-arginine dipeptides, has a dominant role in this activity. Because of the similarity to SR proteins we have named these proteins SRrp40 and SRrp35, respectively, for SR-repressor proteins of approximately 40 and approximately 35 kDa. Both factors show tissue- and cell type-specific patterns of expression. We propose that these two proteins are SR protein-like alternative splicing regulators that antagonize authentic SR proteins in the modulation of alternative 5' splice site choice.  相似文献   

6.
7.
Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2.   总被引:119,自引:0,他引:119  
A Mayeda  A R Krainer 《Cell》1992,68(2):365-375
When messenger RNA precursors (pre-mRNAs) containing alternative 5' splice sites are spliced in vitro, the relative concentrations of the heterogeneous ribonucleoprotein (hnRNP) A1 and the essential splicing factor SF2 precisely determine which 5' splice site is selected. In general, an excess of hnRNP A1 favors distal 5' splice sites, whereas an excess of SF2 results in utilization of proximal 5' splice sites. The regulation of these antagonistic activities may play an important role in the tissue-specific and developmental control of gene expression by alternative splicing.  相似文献   

8.
Barta A  Kalyna M  Reddy AS 《The Plant cell》2010,22(9):2926-2929
Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.  相似文献   

9.
Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin beta-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans.  相似文献   

10.
11.
12.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

13.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.  相似文献   

14.
Genetic and molecular data have implicated the Drosophila gene female-lethal (2)d (fl (2)d) in alternative splicing regulation of genes involved in sexual determination. Sex-specific splicing is under the control of the female-specific regulatory protein sex-lethal (SXL). Co-immunoprecipitation and mass spectrometry results indicate that SXL and FL (2)D form a complex and that the protein VIRILIZER and a Ran-binding protein implicated in protein nuclear import are also present in complexes containing FL (2)D. A human homolog of FL (2)D was identified and cloned. Interestingly, this gene encodes a protein (WTAP) that was previously found to interact with the Wilms' tumor suppressor-1 (WT1), an isoform of which binds to and co-localizes with splicing factors. Alternative splicing of transformer pre-mRNA, a target of SXL regulation, was affected by immunodepletion of hFL (2)D/WTAP from HeLa nuclear extracts, thus arguing for a biochemical function of FL (2)D/WTAP proteins in splicing regulation.  相似文献   

15.
The superfamily of arginine/serine-rich splicing factors.   总被引:33,自引:0,他引:33       下载免费PDF全文
  相似文献   

16.
SR proteins are essential splicing factors required for constitutive splicing and function as key regulators of alternative RNA splicing. We have shown that SR proteins purified from late adenovirus-infected cells (SR-Ad) are functionally inactivated as splicing enhancer or splicing repressor proteins by a virus-induced partial de-phosphorylation. Here, we show that SR proteins purified from late vaccinia-virus-infected cells (SR-VV) are also hypo-phosphorylated and functionally inactivated as splicing regulatory proteins. We further show that incubating SR-Ad proteins under conditions that restore the phospho-epitopes to the SR proteins results in the restoration of their activity as splicing enhancer and splicing repressor proteins. Interestingly, re-phosphorylation of SR-VV proteins only partially restored the splicing enhancer or splicing repressor phenotype to the SR proteins. Collectively, our results suggest that viral control of SR protein activity may be a common strategy used by DNA viruses to take control of the host cell RNA splicing machinery.  相似文献   

17.
The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival.  相似文献   

18.
The U1 snRNP-specific 70K protein is one of the few snRNP proteins from higher eukaryotic cells that is phosphorylated in vivo (1,2). Immunoaffinity purified spliceosomal snRNPs (U1, U2, U5, and U4/U6) were tested for their ability to phosphorylate in vitro the U1-specific 70K protein. An snRNP-associated kinase activity which phosphorylates all U1-70K isoelectric variants was identified. Like its in vivo counterpart, this snRNP-associated enzyme phosphorylates solely serine residues of the 70K protein, preferentially utilizing ATP as a phosphodonor. Tryptic phosphopeptide analysis revealed an overlapping set of at least four radiolabeled peptides in the in vivo and in vitro phosphorylated protein, suggesting that the snRNP-associated serine kinase is responsible, at least in part, for the 70K protein phosphorylation observed in vivo. Chymotryptic digestion of in vitro, 32P-labeled 70K protein and in vitro phosphorylation studies with a synthetic peptide, indicated that the multiple 70K phosphorylation sites are limited to a highly charged, C-terminal domain of the protein. In vitro phosphorylation studies with the splicing factor ASF/SF2 and several deletion mutants demonstrated that, similar to the U1-70K protein, the snRNP-associated serine kinase phosphorylates the carboxy terminal RS-rich domain of ASF/SF2. A potential general role for this enzyme in the phosphorylation of splicing factors and its consequences for pre-mRNA splicing regulation are discussed.  相似文献   

19.
Computer analysis of human intron sequences have revealed a 50 nucleotide (nt) GC-rich region downstream of the 5' splice site; the trinucleotide GGG occurs almost four times as frequently as it would in a random sequence. The 5' part of a beta-tropomyosin intron exhibits six repetitions of the motif (A/U)GGG. In order to test whether these motifs play a role in the splicing process we have mutated some or all of them. Mutated RNAs show a lower in vitro splicing efficiency when compared with the wild-type, especially when all six motifs are mutated (> 70% inhibition). Assembly of the spliceosome complex B and, to a lesser extent, of the pre-spliceosome complex A also appears to be strongly affected by this mutation. A 55 kDa protein within HeLa cell nuclear extract is efficiently cross-linked to the G-rich region. This protein is present in the splicing complexes and its cross-linking to the pre-mRNA requires the presence of one or several snRNP. Altogether our results suggest that the G-rich sequences present in the 5' part of introns may act as an enhancer of the splicing reaction at the level of spliceosome assembly.  相似文献   

20.
ED-A and ED-B are facultative type III homologies of fibronectin, encoded by alternatively spliced exons, described in man and in rat. A hybrid alpha-globin-fibronectin minigene containing the ED-B region from the human gene has been transfected in human cell lines derived from various tissues, in order to study the processing of the generated precursor RNA in the different cell environments. In most tested lines the pre-RNA is alternatively spliced and produces two mature RNAs, with and without the ED-B exon, in different ratios that closely resemble the corresponding endogenous fibronectin RNAs. In a hepatoma cell line, Hep 3B, only one RNA is produced, in which the ED-B exon is absent; the same pattern of splicing is observed in liver. The data show that all the information required to produce accurate and regulated alternative splicing of the ED-B exon is contained in the fragment used and cell specific factors are necessary for the pre-RNA to be differentially spliced in the various cell lines. In contrast, expression in Hep 3B of a similar gene containing the ED-A area failed to reproduce the liver specific splicing pattern. Therefore regulation of ED-A processing is likely to involve different mechanisms to those responsible for control of ED-B splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号