首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
RNA packaging signals (psi) from the 5' ends of murine and avian retroviral genomes have previously been shown to direct encapsidation of heterologous mRNA into the retroviral virion. The avian 5' packaging region has now been further characterized, and we have defined a 270-nucleotide sequence, A psi, which is sufficient to direct packaging of heterologous RNA. Identification of the A psi sequence suggests that several retroviral cis-acting sequences contained in psi+ (the primer binding site, the putative dimer linkage sequence, and the splice donor site) are dispensable for specific RNA encapsidation. Subgenomic env mRNA is not efficiently encapsidated into particles, even though the A psi sequence is present in this RNA. In contrast, spliced heterologous psi-containing RNA is packaged into virions as efficiently as unspliced species; thus splicing per se is not responsible for the failure of env mRNA to be encapsidated. We also found that an avian retroviral mutant deleted for both nucleocapsid Cys-His boxes retains the capacity to encapsidate RNA containing psi sequences, although this RNA is unstable and is thus difficult to detect in mature particles. Electron microscopy reveals that virions produced by this mutant lack a condensed core, which may allow the RNA to be accessible to nucleases.  相似文献   

6.
We characterized 11 DNA polymerase mutants of human hepatitis B virus (HBV) which contain single missense or nonsense mutations in the various domains within this gene. Except for mutant 738, a tight association between DNA replication and RNA packaging of these missense pol mutants was observed. Further analysis of HBV core particle-associated RNA indicated that only the 3.5-kb core-specific RNA, but not the precore-specific RNA, is selectively packaged in this tissue culture system. Previously, we have demonstrated that only the 3.5-kb core-specific RNA can serve as an efficient template for pol translation. Taken together, our results suggest that selectivity of HBV RNA packaging occurs as a result of selective translation of pol-containing mRNAs. Furthermore, our data suggest that the RNA encapsidation domain of pol overlaps with all of the domains of pol involved in the synthesis of terminal protein, as well as DNA replication. Finally, on the basis of gradient centrifugation analysis, a pol defect appeared to have no negative effect on the assembly or stability of core particles. A new method to assay RNA encapsidation, as well as potential RNase H activity, is reported.  相似文献   

7.
Infectious measles virus from cloned cDNA.   总被引:12,自引:1,他引:11  
  相似文献   

8.
9.
10.
11.
Nucleocapsid assembly in hepadnavirus replication requires selective encapsidation of the pregenomic RNA template and the viral polymerase by the core proteins. It has been shown that an encapsidation signal located at the 5' end of the pregenomic RNA is responsible for its interaction with the polymerase. In the present study, we have shown that a region located at the 3' periphery of the core open reading frame may interact with the viral polymerase in duck hepatitis B virus. By using an in vitro rabbit reticulocyte lysate translation system, we found that interaction of the polymerase with this region resulted in selective suppression of core mRNA translation. Insertion of this putative inhibitory sequence into the CD4 gene also led to a selective inhibition of CD4 mRNA translation in the presence of polymerase. Specific inhibition of core protein synthesis was observed in a chicken hepatoma cell line (LMH) cotransfected with core and polymerase plasmid DNA.  相似文献   

12.
Particles of most virus species accurately package a single genome, but there are indications that the pleomorphic particles of parainfluenza viruses incorporate multiple genomes. We characterized a stable measles virus mutant that efficiently packages at least two genomes. The first genome is recombinant and codes for a defective attachment protein with an appended domain interfering with fusion-support function. The second has one adenosine insertion in a purine run that interrupts translation of the appended domain and restores function. In that genome, a one base deletion in a different purine run abolishes polymerase synthesis, but restores hexameric genome length, thus ensuring accurate RNA encapsidation, which is necessary for efficient replication. Thus, the two genomes are complementary. The infection kinetics of this mutant indicate that packaging of multiple genomes does not negatively affect growth. We also show that polyploid particles are produced in standard infections at no expense to infectivity. Our results illustrate how the particles of parainfluenza viruses efficiently accommodate cargoes of different volume, and suggest a mechanism by which segmented genomes may have evolved.  相似文献   

13.
Hepadnaviruses, as well as other pararetroviruses, express their pol (P) gene product unfused to the preceding core gene implying that these retroelements have developed a mechanism for initiating assembly and replication that is principally different from the one used by retroviruses and retrotransposons. We have analysed this mechanism for the human hepatitis B virus by using a newly developed, highly sensitive detection method based upon radiolabelling of the P protein at newly introduced target sites for protein kinase A. The results obtained demonstrate that polymerase encapsidation depends on the concomittant encapsidation of the HBV RNA pregenome and that packaging of the viral RNA, in turn, depends on the presence of P protein. Loss of P protein encapsidation by mutations inactivating the HBV RNA encapsidation signal epsilon could be compensated by trans-complementation with recombinant RNA molecules carrying the epsilon sequence. Thus, in contrast to retroviral replication, the interaction of the hepadnaviral P protein and the RNA genome at its packaging signal appears to be crucial for initiating the formation of replication-competent nucleocapsids. Furthermore, RNA control of P protein packaging stringently limits the number of polymerase molecules that can be encapsidated.  相似文献   

14.
15.
cis elements required for the encapsidation of human immunodeficiency virus type 1 (HIV-1) RNA have been investigated by using a replication-competent helper virus to package a series of HIV-1-based vectors which had been stably transfected into human CD4 T-cell lines. A previously identified packaging signal in the 5' leader region was not sufficient for the encapsidation of small vectors containing heterologous genes. In contrast, vectors containing additional gag and env sequences were packaged with high efficiency and transduced into CD4-expressing target cells with titers exceeding 10(4) CFU/ml. The presence of gag sequences did not enhance vector packaging efficiency. A 1.1-kb env gene fragment encompassing the Rev-responsive element was absolutely required for the expression and encapsidation of vectors containing cis-acting repressive sequences and appeared also to contain an important packaging signal. Vectors as small as 2.6 kb were successfully packaged in this system. The presence of abundant, packageable vector RNA did not appear to interfere with encapsidation of the wild-type HIV-1 genome, suggesting that HIV-1 RNA packaging capacity is not saturated during acute infection.  相似文献   

16.
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.  相似文献   

17.
18.
19.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号