首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction.  相似文献   

2.
The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.  相似文献   

3.
Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.  相似文献   

4.
Summary Carbon catabolite repression in yeast depends on catalytic active hexokinase isoenzyme PII (Entian 1980a). A yeast strain lacking hexokinase isoenzymes PI and PII was transformed, using a recombinant pool with inserts of yeast nuclear DNA up to 10 kbp in length. One hundred transformants for hexokinase were obtained. All selected plasmids coded for hexokinase isoenzyme PII, none for hexokinase isoenzyme PI, and carbon catabolite repression was restored in the transformants. Thirty-five independently isolated stable plasmids were investigated further. Analysis with the restriction enzyme EcoRI showed that these plasmids fell into two classes with different restriction behaviour. One representative of each class was amplified in Escherichia coli and transferred back into the yeast hexokinase-deficient strain with concomitant complementation of the nuclear mutation. The two types of insert were analysed in detail with 16 restriction enzymes, having 0–3 cleavage sites on transformant vector YRp7. The plasmids differed from each other by the orientation of the yeast insert in the vector. After yeast transformation with fragments of one plasmid the hexokinase PII gene was localised within a region of 1.65 kbp.  相似文献   

5.
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.  相似文献   

6.
Hexokinase is the first enzyme in the glycolytic pathway, catalyzing the transfer of a phosphoryl group from ATP to glucose to form glucose 6-phosphate and ADP. Two yeast hexokinase isozymes are known, namely PI and PII. The crystal structure of yeast hexokinase PII from Saccharomyces cerevisiae without substrate or competitive inhibitor is determined and refined in a tetragonal crystal form at 2.2-A resolution. The folding of the peptide chain is very similar to that of Schistosoma mansoni and previous yeast hexokinase models despite only 30% sequence identity between them. Distinct differences in conformation are found that account for the absence of glucose in the binding site. Comparison of the current model with S. mansoni and yeast hexokinase PI structures both complexed with glucose shows in atomic detail the rigid body domain closure and specific loop movements as glucose binds. A hydrophobic channel formed by strictly conserved hydrophobic residues in the small domain of the hexokinase is identified. The channel's mouth is close to the active site and passes through the small domain to its surface. The possible role of the observed channel in proton transfer is discussed.  相似文献   

7.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

8.
Abstract Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant ( frA ). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans , while the fr A1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the fr A1 mutation. The absence of hexokinase activity in the fr A1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and l-arabinose catabolism. This suggests that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.  相似文献   

9.
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.  相似文献   

10.
BACKGROUND: Hexokinase I sets the pace of glycolysis in the brain, catalyzing the ATP-dependent phosphorylation of glucose. The catalytic properties of hexokinase I are dependent on product inhibition as well as on the action of phosphate. In vivo, a large fraction of hexokinase I is bound to the mitochondrial outer membrane, where the enzyme adopts a tetrameric assembly. The mitochondrion-bound hexokinase I is believed to optimize the ATP/ADP exchange between glucose phosphorylation and the mitochondrial oxidative phosphorylation reactions. RESULTS: The crystal structure of human hexokinase I has been determined at 2.25 A resolution. The overall structure of the enzyme is in keeping with the closed conformation previously observed in yeast hexokinase. One molecule of the ATP analogue AMP-PNP is bound to each N-terminal domain of the dimeric enzyme in a surface cleft, showing specific interactions with the nucleotide, and localized positive electrostatic potential. The molecular symmetry brings the two bound AMP-PNP molecules, at the centre of two extended surface regions, to a common side of the dimeric hexokinase I molecule. CONCLUSIONS: The binding of AMP-PNP to a protein site separated from the catalytic centre of human hexokinase I can be related to the role played by some nucleotides in dissociating the enzyme from the mitochondrial membrane, and helps in defining the molecular regions of hexokinase I that are expected to be in contact with the mitochondrion. The structural information presented here is in keeping with monoclonal antibody mapping of the free and mitochondrion-bound forms of the enzyme, and with sequence analysis of hexokinases that differ in their mitochondria binding properties.  相似文献   

11.
The HXK2 gene is required for a variety of regulatory effects leading to an adaptation for fermentative metabolism in Saccharomyces cerevisiae. However, the molecular basis of the specific role of Hxk2p in these effects is still unclear. One important feature in order to understand the physiological function of hexokinase PII is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells. Here we show that Hxk2p exists in vivo in a dimeric-monomeric equilibrium which is affected by phosphorylation. Only the monomeric form appears phosphorylated, whereas the dimer does not. The reversible phosphorylation of Hxk2p is carbon source dependent, being more extensive on poor carbon sources such as galactose, raffinose, and ethanol. In vivo dephosphorylation of Hxk2p is promoted after addition of glucose. This effect is absent in glucose repression mutants cat80/grr1, hex2/reg1, and cid1/glc7. Treatment of a glucose crude extract from cid1-226 (glc7-T152K) mutant cells with λ-phosphatase drastically reduces the presence of phosphoprotein, suggesting that CID1/GLC7 phosphatase together with its regulatory HEX2/REG1 subunit are involved in the dephosphorylation of the Hxk2p monomer. An HXK2 mutation encoding a serine-to-alanine change at position 15 [HXK2 (S15A)] was to clarify the in vivo function of the phosphorylation of hexokinase PII. In this mutant, where the Hxk2 protein is unable to undergo phosphorylation, the cells could not provide glucose repression of invertase. Glucose induction of HXT gene expression is also affected in cells expressing the mutated enzyme. Although we cannot rule out a defect in the metabolic state of the cell as the origin of these phenomena, our results suggest that the phosphorylation of hexokinase is essential in vivo for glucose signal transduction.  相似文献   

12.
Summary Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In conrrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.  相似文献   

13.
Hexokinase is the first enzyme in the glycolytic pathway that catalyzes the transfer of a phosphoryl group from ATP to glucose to form glucose-6-phosphate and ADP. Two yeast hexokinase isozymes are known, namely PI and PII. Here we redetermined the crystal structure of yeast hexokinase PI from Saccharomyces cerevisiae as a complex with its substrate, glucose, and refined it at 2.95 A resolution. Comparison of the holo-PI yeast hexokinase and apo-hexokinase structures shows in detail the rigid body domain closure and specific loop movements as glucose binds and sheds more light on structural basis of the "induced fit" mechanism of reaction in the HK enzymatic action. We also performed statistical coupling analysis of the hexokinase family, which reveals two co-evolved continuous clusters of amino acid residues and shows that the evolutionary coupled amino acid residues are mostly confined to the active site and the hinge region, further supporting the importance of these parts of the protein for the enzymatic catalysis.  相似文献   

14.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

15.
A NMR method related to 2D CH correlation with an additional double quantum filter for 31P spin coupling was employed to follow the reaction kinetics of the two anomers of glucose during phosphorylation catalyzed by the enzyme yeast hexokinase. The kinetic parameters according to Michaelis–Menten for these reactions have been determined and it is shown that the β-anomer of glucose is phosphorylated faster by a factor of 1.4 versus the α-anomer. Use of human liver glucokinase as an enzyme yields more complex kinetics.  相似文献   

16.
The complete amino acid sequence of the catalytic domain of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been deduced from the nucleotide sequence of cloned cDNA. Extensive similarity in sequence, taken to indicate similarity in secondary and tertiary structure, is seen between the mammalian enzyme and yeast hexokinase isozymes A and B. All residues critical for binding glucose to the yeast enzyme are conserved in brain hexokinase. A location for the substrate ATP binding site is proposed based on relation of structural features in the yeast enzyme to characteristics commonly observed in other nucleotide binding enzymes; sequences in regions proposed to be important for binding of ATP to the yeast enzyme are highly conserved in brain hexokinase.  相似文献   

17.
The outer mitochondrial membrane receptor for hexokinase binding has been identified as the VDAC protein, also known as mitochondrial porin. The ability of the receptor to bind hexokinase is inhibited by pretreatment with dicyclohexylcarbodiimide (DCCD). At low concentrations, DCCD inhibits hexokinase binding by covalently labeling the VDAC protein, with no apparent effect on VDAC channel-forming activity. The stoichiometry of [14C]-DCCD labeling is consistent with one to two high-affinity DCCD-binding sites per VDAC monomer. A comparison between the sequence of yeast VDAC and a conserved sequence found at DCCD-binding sites of several membrane proteins showed two sites where the yeast VDAC amino acid sequence appears to be very similar to the conserved DCCD-binding sequence. Both of these sites are located near the C-terminal end of yeast VDAC (residues 257–265 and 275–283). These results are consistent with a model in which the C-terminal end of VDAC is involved in binding to the N-terminal end of hexokinase.  相似文献   

18.
Three glucose-phosphorylating enzymes were separated from cell-free extracts of Saccharomyces cerevisiae by hydroxylapatite chromatography. Variations in the amounts of these enzymes in cells growing on glucose and on ethanol showed that hexokinase PI was a constitutive enzyme, whereas synthesis of hexokinase PII and glucokinase were regulated by the carbon source used. Glucokinase proved to be a glucomannokinase with Km values of 0.04 mM for both glucose and mannose. D-Xylose produced an irreversible inactivation of the three glucose-phosphorylating enzymes depending on the presence or absence of ATP. Hexokinase PI inactivation required ATP, while hexokinase PII was inactivated by D-xylose without ATP in the reaction mixture. Glucokinase was protected by ATP from this inactivation. D-Xylose acted as a competitive inhibitor of hexokinase PI and glucokinase and as a non-competitive inhibitor of hexokinase PII.  相似文献   

19.
用定位突变方法对人脑己糖激酶活性位点的研究   总被引:2,自引:0,他引:2  
哺乳动物己糖激酶Ⅰ的分子量是100kD.目前已经认为是由分子量50kD酵母型己糖激酶通过基因复制和融合进化来的.己糖激酶Ⅰ的C端半分子包含了底物葡萄糖的结合位点即催化位点.X射线衍射结构的结果已经推测在酵母型的己糖激酶分子中Ser-158、Asp-211是和葡萄糖的结合及催化活性有关,这些氨基酸残基相当于人脑己糖激酶Ⅰ分子中的Ser-603、Asp-657,它们正好位于该酶分子的C端半分子中.定位突变这两个氨基酸残基得到4个该酶的C端半分子酶(mini-HKⅠ)的突变体,它们是Ser-603→Cys,Ser-603→Thr,Asp-675→Glu,Asp-675→Val.实验结果指出4个突变体酶的Km值变化不大,但酶活性只保留野生型酶的0.28%~11%,园二色谱分析4个突变体的CD谱与野生型酶基本一致,因此说明二级结构没有变化.这些研究结果和X射线衍射结构的推断是一致的,显示了Ser-603和Asp-657氨基酸残基在该酶结合底物葡萄糖或催化作用上起了重要的作用.  相似文献   

20.
Filfil R  Chalikian TV 《FEBS letters》2003,554(3):351-356
The binding of D-glucose to hexokinase PII at 25 degrees C and pH 8.7 has been investigated by a combination of ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. The binding of glucose to the enzyme results in significant dehydration of the two interacting molecules, while the intrinsic coefficient of adiabatic compressibility of hexokinase slightly decreases. Glucose-hexokinase association is an entropy-driven process. The favorable change in entropy results from compensation between two large contributions. The binding-induced increase in hydrational entropy slightly prevails over the decrease in the configurational entropy of the enzyme. Taken together, our results emphasize the crucial role of water in modulating the energetics of protein recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号