首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Advances in elucidating the molecular processes controlling flower initiation and development have provided unique opportunities to investigate the developmental genetics of non-flowering plants. In addition to providing insights into the evolutionary aspects of seed plants, identification of genes regulating reproductive organ development in gymnosperms could help determine the level of homology with current models of flower induction and floral organ identity. Based upon this, we have searched for putative developmental regulators in conifers with amino acid sequence homology to MADS-box genes. PCR cloning using degenerate primers targeted to the MADS-box domain revealed the presence of over 27 MADS-box genes within black spruce (Picea mariana), including several with extensive homology to either AP1 or AGAMOUS, both known to regulate flower development in Arabidopsis. This indicates that like angiosperms, conifers contain a large and diverse MADS-box gene family that probably includes regulators of reproductive organ development. Confirmation of this was provided by the characterization of an AGAMOUS-like cDNA clone called SAG1, whose conservation of intron position and tissue-specific expression within reproductive organs indicate that it is a homologue of AGAMOUS. Functional homology with AGAMOUS was demonstrated by the ability of SAG1 to produce homeotic conversions of sepals to carpels and petals to stamens when ectopically expressed in transgenic Arabidopsis. This suggests that some of the genetic pathways controlling flower and cone development are homologous, and antedate the 300-million-year-old divergence of angiosperms and gymnosperms.  相似文献   

3.
The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.  相似文献   

4.
5.
The reproductive organs of conifers, the pollen cones and seed cones, differ in morphology from the angiosperm flower in several fundamental respects. In this report we present evidence to suggest that the two plant groups, in spite of these morphological differences and the long evolutionary distance between them, share important features in regulating the development of the reproductive organs. We present the cloning of three genes, DAL11, DAL12, and DAL13, from Norway spruce, all of which are related to the angiosperm B-class of homeotic genes. The B-class genes determine the identities of petals and stamens. They are members of a family of MADS-box genes, which also includes C-class genes that act to determine the identity of carpels and, in concert with B genes specify stamens in the angiosperm flower. Phylogenetic analyses and the presence of B-class specific C-terminal motifs in the DAL protein sequences imply homology to the B-class genes. Specific expression of all three genes in developing pollen cones suggests that the genes are involved in one aspect of B function, the regulation of development of the pollen-bearing organs. The different temporal and spatial expression patterns of the three DAL genes in the developing pollen cones indicate that the genes have attained at least in part distinct functions. The DAL11, DAL12, and 13 expression patterns in the pollen cone partly overlap with that of the previously identified DAL2 gene, which is structurally and functionally related to the angiosperm C-class genes. This result supports the hypothesis that an interaction between B- and C-type genes is required for male organ development in conifers like in the angiosperms. Taken together, our data suggests that central components in the regulatory mechanisms for reproductive organ development are conserved between conifers and angiosperms and, thus, among all seed plants.  相似文献   

6.
Progression through the plant life cycle involves change in many essential features, most notably in the capacity to reproduce. The transition from a juvenile vegetative and non-reproductive to an adult reproductive phase is gradual and can take many years; in the conifer Norway spruce, Picea abies, typically 20-25 years. We present a detailed analysis of the activities of three regulatory genes with potential roles in this transition in Norway spruce: DAL1, a MADS-box gene related to the AGL6 group of genes from angiosperms, and the two LEAFY-related genes PaLFY and PaNLY. DAL1 activity is initiated in the shoots of juvenile trees at an age of 3-5 years, and then increases with age, whereas both LFY genes are active throughout the juvenile phase. The activity of DAL1 further shows a spatial pattern along the stem of the tree that parallels a similar gradient in physiological and morphological features associated with maturation to the adult phase. Constitutive expression of DAL1 in transgenic Arabidopsis plants caused a dramatic attenuation of both juvenile and adult growth phases; flowers forming immediately after the embryonic phase of development in severely affected plants. Taken together, our results support the notion that DAL1 may have a regulatory role in the juvenile-to-adult transition in Norway spruce.  相似文献   

7.
In this comparative developmental genetics study, we test hypotheses based on fossil and morphological data on reproductive organ morphology and evolution in conifers--specifically, the ovule-bearing organ in Cupressaceae and Taxodiaceae. Genes homologous to the Arabidopsis gene AGAMOUS are expressed in ovuliferous scales of spruces (Picea) throughout development. Previous studies have shown that the AGAMOUS subfamily of MADS-box genes predates the split between angiosperms and gymnosperms, and that these genes have in part conserved functions in reproductive development among seed plants, especially in the specification of identity of the ovule-bearing organs. These data indicate that their expression in conifer families other than Pinaceae might be used as markers for organs homologous to the Pinaceae ovuliferous scale. Here we have isolated putative AGAMOUS orthologs from Cupressaceae and Taxodiaceae and analyzed their expression pattern in seed cones to test for the presence of morphological homologs of ovuliferous scales. Our results were not congruent with the hypothesis that the tooth of the Cryptomeria seed cone is homologous to the Picea ovuliferous scale. Likewise, the hypothesis that the bracts of Thujopsis and Juniperus contain fused ovuliferous scales was not supported. However, we found expression of AGAMOUS homologs in the sterile bracts of Cupressaceae seed cones at late developmental stages. This expression probably represents a novel gene function in these conifer families, since no corresponding expression has been identified in Pinaceae. Our study suggests that the evolutionary history of modern conifer cones is more diverse than previously thought.  相似文献   

8.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

9.
Tandre, K., Svenson, M., Svensson, M.E. and Engström, P. (1998) Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms, Plant J. 15, 615–623Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Séguin, A. and Stewart, D. (1998) Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis, Plant J. 15, 625–634  相似文献   

10.
11.
12.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

13.
Class B floral homeotic genes are involved in specifying stamen and petal identity in angiosperms (flowering plants). Here we report that gymnosperms, the closest relatives of the angiosperms, contain at least two different clades representing putative orthologues of class B genes, termed GGM2-like and DAL12-like genes. To obtain information about the functional conservation of the class B genes in seed plants, the representative of one of these clades from Gnetum, termed GGM2, was expressed under the control of the CaMV 35S promoter in Arabidopsis wild-type plants and in different class B mutants. In wild-type plants and in a conditional mutant grown at a permissive temperature, gain-of-function phenotypes were obtained in whorls 1 and 4, where class B genes are usually not expressed. In contrast, loss-of-function phenotypes were observed in whorls 2 and 3, where class B genes are expressed. In different class B gene null mutants of Arabidopsis, and in the conditional B mutant grown at the non-permissive temperature, a partial complementation of the mutant phenotype was obtained. In situ hybridization studies and class B gene promoter test fusion experiments demonstrated that the gain-of-function phenotypes are not due to an upregulation of the endogenous B genes from Arabidopsis, and hence probably involve interactions between GGM2 protein homodimers and class B protein target genes other than the Arabidopsis class B genes itself. To our knowledge, this is the first time that partial complementation of a homeotic mutant by an orthologous gene from a distantly related species has been reported. These data suggest that GGM2 has a function in the gymnosperm Gnetum which is related to that of class B floral organ identity genes of angiosperms. That function may be in the specification of male reproductive organ identity, and in distinguishing male from female reproductive organs.  相似文献   

14.
Evolution of Reproductive Organs in Land Plants   总被引:4,自引:0,他引:4  
LEAFY gene is the positive regulator of the MADS-box genes in flower primordia. The number of MADS-box genes presumably increased by gene duplications before the divergence of ferns and seed plants. Most MADS-box genes in ferns are expressed similarly in both vegetative and reproductive organs, while in gymnosperms, some MADS-box genes are specifically expressed in reproductive organs. This suggests that (1) the increase in the number of MADS-box genes and (2) the subsequent recruitment of some MADS-box genes as homeotic selector genes were important for the evolution of complex reproductive organs. The phylogenetic tree including both angiosperm and gymnosperm MADS-box genes indicates the loss of the A-function genes in the gymnosperm lineage, which is presumably related to the absence of perianths in extant gymnosperms. Comparison of expression patterns of orthologous MADS-box genes in angiosperms, Gnetales, and conifers supports the sister relationship of Gnetales and conifers over that of Gnetales and angiosperms predicted by phylogenetic trees based on amino acid and nucleotide sequences. Received 30 July 1999/ Accepted in revised form 9 September 1999  相似文献   

15.
Summary A family of genes expressed during early stages of shoot development were isolated fromPinus radiata. A homologue of theLEAFY/FLORICAULA flower meristem-identity genes,NEEDLY (NLY), and three MADS-box genes,PrMADS1, PrMADS2 andPrMADS3 (Pinus radiata MADS-box genes), were expressed at early stages of initiation and differentiation of reproductive (male and female) cone buds, as well as vegetative buds. Expression ofNLY in transgenicArabidopsis thaliana promoted floral fate, demonstrating that it encodes a functional ortholog of theFLORICAUL A/LEAFY genes of angiosperms.Abbreviations DSB dwarf shoot bud - LSTB long-shoot terminal bud - PCB pollen cone bud - SCB seed cone bud - LD long day - SD short day  相似文献   

16.
17.
18.
Sather DN  York A  Pobursky KJ  Golenberg EM 《Planta》2005,222(2):284-292
Development in dioecious cultivated spinach, Spinacia oleracea, is distinguished by the absence of alternative reproductive organ primordia in male and female flowers. Given the highly derived floral developmental program in spinach, we wished to characterize a spinach C class floral identity gene and to determine the patterns of sequence evolution as well as compare the spatial and temporal expression patterns with those of AGAMOUS. The isolated cDNA sequence clusters phylogenetically within the AGAMOUS/FARINELLI C class clade. In comparison with the SLM1 sequence from the related Silene latifolia, amino acid replacements are highly conservative and non-randomly distributed, being predominantly found in hinge regions or on exposed surfaces of helices. The spinach gene (SpAGAMOUS) appears to be exclusively expressed in reproductive tissues and not in vegetative organs. Initial expression of SpAGAMOUS is similar in male and female floral primordia. However, upon initiation of the first whorl organs, SpAGAMOUS becomes restricted to meristemic regions from which the reproductive primordia will develop. This results in an early gender-specific pattern. Thus, the spinach C class gene is differentially expressed prior to reproductive organ development and is, at least, correlated with, if not directly involved in, the sexual dimorphism in spinach.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Members of the AGAMOUS (AG) family of MADS-box genes play important roles in regulating the development of reproductive organs in flowering plants. To elucidate the molecular mechanisms of floral development in Asparagus virgatus, we isolated and characterized an Asparagus AG-homologue, AVAG2. AVAG2 contains an open reading frame that encodes a deduced protein with 234 amino acid residues. Phylogenetic analysis indicated that AVAG2 belongs to the D-lineage of the AG gene family. AVAG2 mRNA was detected in the flower, but not in vegetative organs. Moreover, in in situ hybridization experiments, AVAG2 signals were observed in the stamens and carpels during early flower development, and appeared in the ovule only at later developmental stages. This suggests that the AVAG2 gene is involved in ovule formation. Thus, our expression data support the phylogenetic analysis indicating that AVAG2 belongs to the D-class gene family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号