首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
rRNA genetic markers were analyzed in 97 isolates of nodule bacteria from six legume species in Chihuahua, Mexico. The most common genotypes were widely shared across host species and had 16S rRNA sequences identical to those of strains from an eastern North American legume (Amphicarpaea) that are closely related to Bradyrhizobium elkanii.  相似文献   

2.
DNA sequencing and polymerase chain reaction (PCR) assays with lineage-specific primers were used to analyze the diversity of 276 isolates of Bradyrhizobium sp. nodule bacteria associated with 13 native legumes species in the northeastern United States, representing eight genera in six legume tribes. A PCR screen with two primer pairs in the rRNA region indicated that seven of the legume species were exclusively associated with strains having markers resembling Bradyrhizobium elkanii, while the remaining six host species harbored strains related to both B. elkanii and Bradyrhizobium japonicum. Sequence analysis of 22 isolates for portions of 16S rRNA and 23S rRNA yielded congruent phylogenetic trees and showed that isolates from different legume genera often shared similar or identical sequences. However, trees inferred from portions of two other genes (alpha-ketoglutarate dioxygenase gene (tfdA), the alpha-subunit of nitrogenase (nifD)) differed significantly from the rRNA phylogeny. Thus, for Bradyrhizobium populations in this region, lateral gene transfer events appear to have altered genealogical relationships of different portions of the genome. These results extend the number of likely cases of gene transfer between divergent taxa of Bradyrhizobium (from members of the B. elkanii lineage to the B. japonicum group) and suggest that transfers have also occurred among separate subgroups of the B. elkanii lineage.  相似文献   

3.
Parker MA 《Molecular ecology》2003,12(9):2447-2455
Assays with seven sets of lineage-specific polymerase chain reaction (PCR) primers in the ribosomal RNA region were performed on 96 isolates of the Bradyrhizobium sp. nodule bacteria from Barro Colorado Island, Panama. The isolates were derived from 10 legume host species in six genera (Centrosema, Desmodium, Dioclea, Inga, Machaerium and Vigna). The PCR assays differentiated 13 composite genotypes, and sequencing of a 5' 23S rRNA region indicated that all but one had a unique sequence. The most common genotype (seen in 44% of the isolates) was associated with all six legume host genera, and had a marker profile and 5' 23S rRNA sequence identical to a Bradyrhizobium lineage associated with several other legume genera in Panama and Costa Rica. Another 46% of the isolates had genotypes found to be associated with two to three legume genera. Bradyrhizobium strains with low host specificity thus appear to be prevalent in this tropical forest. Based on 16S rRNA and 5' 23S rRNA markers, most of the isolates had clear affinities to either B. japonicum or B. elkanii. However, one strain (Cp5-3) with a B. elkanii-type 16S rRNA marker had a 5' 23S rRNA region resembling B. japonicum. A partition homogeneity test indicated that relationships of strain Cp5-3 were significantly discordant for 16S rRNA vs. 23S rRNA sequences, and a runs test detected significant mosaic structure across the rRNA region. Lateral gene transfer events have therefore played a role in the evolution of symbiotic bacteria in this environment.  相似文献   

4.
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.  相似文献   

5.
Sequences of 16S rRNA and partial 23S rRNA genes and PCR assays with genotype-specific primers indicated that bacteria in the genus Burkholderia were the predominant root nodule symbionts for four mimosoid legumes (Mimosa pigra, M. casta, M. pudica, and Abarema macradenia) on Barro Colorado Island, Panama. Among 51 isolates from these and a fifth mimosoid host (Pithecellobium hymenaeafolium), 44 were Burkholderia strains while the rest were placed in Rhizobium, Mesorhizobium, or Bradyrhizobium. The Burkholderia strains displayed four distinct rRNA sequence types, ranging from 89% to 97% similarity for 23S rRNA and 96.5-98.4% for 16S rRNA. The most common genotype comprised 53% of all isolates sampled and was associated with three legume host species. All Burkholderia genotypes formed nodules on Macroptilium atropurpureum or Mimosa pigra, and sequencing of rRNA genes in strains re-isolated from nodules verified identity with inoculant strains. Sequence analysis of the nitrogenase alpha-subunit gene (nifD) in two of the Burkholderia genotypes indicated that they were most similar to a partial sequence from the nodule-forming strain Burkholderia tuberum STM 678 from South Africa. In addition, a PCR screen with primers specific to Burkholderia nodB genes yielded the expected amplification product in most strains. Comparison of 16S rRNA and partial 23S rRNA phylogenies indicated that tree topologies were significantly incongruent. This implies that relationships across the rRNA region may have been altered by lateral gene transfer events in this Burkholderia population.  相似文献   

6.
Habitat fragmentation affects the biodiversity and function of aboveground organisms in natural ecosystems but has not been studied for effects on belowground species. In this paper, we consider the diversity of the rhizobia associated with the indigenous legume Dalea purpurea in 3 residual prairie areas in Minnesota and Iowa. Using Dalea purpurea as a trap host, 218 rhizobia were recovered from these soils then characterized using BOXA1R PCR. Three major and 13 minor groups were distinguished based on a similarity of greater than 75% in fingerprint patterns. Each major group consisted almost exclusively of rhizobia from a single prairie, with the diversity of Dalea rhizobia recovered from the Hayden Prairie less than that obtained with rhizobia from the other prairies. Based on 16S rRNA gene sequence analysis, isolates from the Hayden, Ordway, and Kellogg-Weaver Dunes prairies were most similar to Rhizobium etli and Rhizobium leguminosarum, Rhizobium gallicum, and Mesorhizobium amorphae and Mesorhizobium huakuii, respectively. This variation in the dominant microsymbiont species across the 3 prairies studied was unexpected but could have been influenced by the limited number of samples that we were allowed to take, by unanticipated cross-nodulation between native legumes, and by variation in the range of legume species present in each residual prairie area. While some of the rhizobia from Dalea nodulated Phaseolus vulgaris, Macroptilium atropurpureum, Leucaena leucocephala, and Onobrychis viciifolia in addition to the Dalea species tested, others nodulated Astragalus canadensis or Amorpha canescens.  相似文献   

7.
The aim of the present study was to identify a collection of 35 Cupriavidus isolates at the species level and to examine their capacity to nodulate and fix N(2). These isolates were previously obtained from the root nodules of two promiscuous trap species, Phaseolus vulgaris and Leucaena leucocephala, inoculated with soil samples collected near Sesbania virgata plants growing in Minas Gerais (Brazil) pastures. Phenotypic and genotypic methods applied for this study were SDS-PAGE of whole-cell proteins, and 16S rRNA and gyrB gene sequencing. To confirm the ability to nodulate and fix N(2), the presence of the nodC and nifH genes was also determined, and an experiment was carried out with two representative isolates in order to authenticate them as legume nodule symbionts. All 35 isolates belonged to the betaproteobacterium Cupriavidus necator, they possessed the nodC and nifH genes, and two representative isolates were able to nodulate five different promiscuous legume species: Mimosa caesalpiniaefolia, L. leucocephala, Macroptilium atropurpureum, P. vulgaris and Vigna unguiculata. This is the first study to demonstrate that C. necator can nodulate legume species.  相似文献   

8.
Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii.  相似文献   

9.
Adzuki bean (Vigna angularis) is an important legume crop native to China, but its rhizobia have not been well characterized. In the present study, a total of 60 rhizobial strains isolated from eight provinces of China were analyzed with amplified 16S rRNA gene RFLP, IGS-RFLP, and sequencing analyses of 16S rRNA, atpD, recA, and nodC genes. These strains were identified as genomic species within Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, and Ochrobactrum. The most abundant groups were Bradyrhizobium species and Sinorhizobium fredii. Diverse nodC genes were found in these strains, which were mainly co-evolved with the housekeeping genes, but a possible lateral transfer of nodC from Sinorhizobium to Rhizobium was found. Analyses of the genomic and symbiotic gene backgrounds showed that adzuki bean shared the same rhizobial gene pool with soybean (legume native to China) and the exotic Vigna species. All of these data demonstrated that nodule formation is the interaction of rhizobia, host plants, and environment characters. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
Relationships of root-nodule bacteria from the tree Tachigali versicolor (legume subfamily Caesalpinioideae) were analyzed for 20 isolates sampled from juvenile plants growing on Barro Colorado Island (BCI), Panama. Bacterial genetic diversity appeared to be low. In the highly polymorphic 5' intervening sequence region of 23S rRNA, all isolates had the same length variant. A 472 bp segment spanning this region was sequenced in four isolates, and all proved to be identical at every nucleotide position. RFLP analysis of a 868 bp fragment of the nitrogenase alpha-subunit gene likewise indicated that all 20 isolates shared an identical set of restriction sites. Phylogenetic analysis of both partial 23S rRNA and nearly full-length 16S rRNA sequences showed that bacterial symbionts of T. versicolor fall into the genus Bradyrhizobium. However, they are divergent from the bradyrhizobia associated with other BCI legumes, as well as from other currently known bacteria in this genus. Inoculation tests with two promiscuously-nodulating legumes showed that bacteria from T. versicolor were unable to form nodules on Vigna unguiculata, but did nodulate Macroptilium atropurpureum, although the nodules lacked nitrogen fixation activity. The association of Tachigali with a divergent lineage of Bradyrhizobium is noteworthy in view of this plant's position within a clade of the mostly non-nodulating "primitive" legume subfamily Caesalpinioideae that gave rise to the predominantly nodulating subfamily Mimosoideae.  相似文献   

11.
Most Rhizobium species described are symbionts that form nodules on legume roots; however, non-nodulating strains of Rhizobium are also widespread in nature. Unfortunately, knowledge of non-nodulating Rhizobium is quite limited compared with nodulating Rhizobium . Here, we studied the phylogenetic diversity of Rhizobium species that inhabit Japanese red pine roots ( Pinus densiflora ). Because fine roots of pine trees are usually colonized by ectomycorrhizal fungi in nature, we mainly used ectomycorrhizal root tips for bacterial isolation. Out of 1195 bacteria isolated from 75 independent root samples from the field and greenhouse experiments, 102 isolates were confirmed to be Rhizobium following partial 16S rRNA gene analysis. Rhizobium species were occasionally dominant in culturable bacterial communities, whereas no Rhizobium species were isolated from the soil itself. Molecular phylogenetic analyses using 16S rRNA, atpD , and recA gene sequences revealed that isolated Rhizobium strains were phylogenetically diverse and that several were distantly related to known Rhizobium species. Considering that a single species of pine is associated with unique and phylogenetically diverse Rhizobium populations, we should pay more attention to non-nodulating strains to better understand the diversity, ecology, and evolution of the genus Rhizobium and plant– Rhizobium associations.  相似文献   

12.
The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations.  相似文献   

13.
The Rhizobium species that nodulate the legume tree Gliricidia sepium were analyzed by phenotypic characteristics (including nodule formation in different hosts), PCR-RFLP patterns and sequences of 16S rRNA genes, multilocus enzyme electrophoresis, and plasmid patterns. Strains of Rhizobium tropici type A and B, Sinorhizobium spp., and Rhizobium etli bv. phaseoli were encountered in G. sepium nodules and their presence depended on the site sampled.  相似文献   

14.
Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution.  相似文献   

15.
Bacterial strains from Zn-Pb mine tailings were isolated by trapping with Anthyllis vulneraria, a legume-host suitable for mine substratum phytostabilisation. Sequence analysis of the 16S rRNA gene and three housekeeping genes (atpD, dnaK and recA) showed that they were related to those of the genus Aminobacter. DNA-DNA relatedness of representative isolates supported the placement of novel strains in Aminobacter as a new species. Phenotypic data emphasize their differentiation from the other related species of Aminobacter and Mesorhizobium. Aminobacter isolates exhibited nodA sequences tightly related with M. loti as the closest nodA relative. By contrast, their nodA sequences were highly divergent from those of M. metallidurans, another species associated with A. vulneraria that carries two complete copies of nodA. Therefore, the novel bacterial strains efficient on A. vulneraria represented the first occurrence of legume symbionts in the genus Aminobacter. They represent a new species for which the name Aminobacter anthyllidis sp. nov. is proposed (type strain STM4645(T)=LMG26462(T)=CFBP7437(T)).  相似文献   

16.
New data on 129 bacterial isolates were analyzed together with prior samples to characterize community-level patterns of legume–rhizobial symbiosis on Barro Colorado Island (BCI), Panama. Nodules have been sampled from 24 BCI legume species in 18 genera, representing about one quarter of the legume species and one half of the genera on the island. Most BCI legumes associated exclusively with nodule symbionts in the genus Bradyrhizobium, which comprised 86.3% of all isolates (315 of 365). Most of the remaining isolates (44 of 365) belonged to the β-proteobacterial genus Burkholderia; these were restricted to two genera in the legume subfamily Mimosoideae. Multilocus sequence analysis indicated that BCI Bradyrhizobium strains were differentiated into at least eight lineages with deoxyribonucleic acid divergence of the same magnitude as found among currently recognized species in this bacterial genus. Two of these lineages were widely distributed across BCI legumes. One lineage was utilized by 15 host species of diverse life form (herbs, lianas, and trees) in 12 genera spanning two legume subfamilies. A second common lineage closely related to the taxon B. elkanii was associated with at least five legume genera in four separate tribes. Thus, BCI legume species from diverse clades within the family frequently share interaction with a few common lineages of nodule symbionts. However, certain host species were associated with unique symbiont lineages that have not been found on other coexisting BCI legumes. More comprehensive sampling of host taxa will be needed to characterize the overall diversity of nodule bacteria and the patterns of symbiont sharing among legumes in this community.  相似文献   

17.
Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events.  相似文献   

18.
This is the first systematic study of rhizobia associated with Albizia trees. The analyses of PCR-RFLP and sequencing of 16S rRNA genes, SDS-PAGE of whole-cell proteins and clustering of phenotypic characters grouped the 31 rhizobial strains isolated from Albizia into eight putative species within the genera Bradyrhizobium, Mesorhizobium and Rhizobium. Among these eight rhizobial species, five were unique to Albizia and the remaining three were shared with Acacia and Leucaena, two legume trees coexisting with Albizia in China. These results indicated that Albizia species nodulate with a wide range of rhizobial species and had preference of microsymbionts different from Acacia and Leucaena. The definition of four novel groups, Mesorhizobium sp., Rhizobium sp. I, Rhizobium sp. II and "R. giardinii", indicates that further studies with enlarged rhizobial population are necessary to better understand the diversity and to clarify the taxonomic relationships of Albizia-associated rhizobia.  相似文献   

19.
The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes.  相似文献   

20.

Background

Nitrogen-fixing legumes are key species in grassland ecosystems, as their ability to fix atmospheric nitrogen can facilitate neighboring plants. However, little is known about the fate of this legume effect in the face of extreme weather events, which are increasingly expected to occur.

Methods

Here, we examined experimentally how the presence of a legume modifies above-ground net primary production (ANPP) and nitrogen supply of neighboring non-legumes under annually recurrent pulsed drought and heavy rainfall events by comparing responses of three key species in European grassland versus without legume presence over 4 years.

Results

Legume presence facilitated community productivity of neighboring non-legumes under ambient weather conditions and also under experimental heavy rainfall. However, no facilitation of community productivity by the legume was found under experimental drought. Productivity of the three target species responded species-specifically to legume presence under different weather conditions: Holcus lanatus was facilitated only under control conditions, Plantago lanceolata was facilitated only under heavy rainfall, and Arrhenatherum elatius was facilitated irrespective of climate manipulations. The legume effects on δ 15N, leaf N concentration, and N uptake were also species-specific, yet irrespective of the climate manipulations. The data suggest that the missing legume effect on community productivity under the pulsed drought was rather caused by reduced N-uptake of the target species than by reduced N-fixation by the legume.

Conclusions

In contrast to heavy rain, the presence of a legume could not effectively buffer community ANPP against the negative effects of extreme drought events in an experimental temperate grassland. Facilitation also depends on the key species that are dominating a grassland community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号