首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified nuclei isolated from bovine corpora lutea showed marked enrichment of NAD pyrophosphorylase, a marker for this organelle. Rough endoplasmic reticulum and lysosomal markers were undetectable, whereas plasma membrane and Golgi markers were detectable but not enriched in nuclei. These highly purified nuclei exhibited specific binding with 125I-labeled human choriogonadotropin, [3H]prostaglandin E1 and [3H]prostaglandin F. However, these bindings were only 15.4% (human choriogonadotropin), 7.9% (prostaglandin E1) and 8.9% (prostaglandin F) of the plasma membrane binding observed under the same conditions. Washing of nuclei and plasma membranes twice with buffer containing 0.1% Triton X-100 resulted in gonadotropin and prostaglandin F binding site and 5′-nucleotidase (EC 3.1.3.5) losses from nuclei that were different from those observed for plasma membranes. More importantly, the washed nuclei exhibited 44% (human choriogonadotropin), 21–26% (prostaglandins) of original specific binding despite virtual disappearance of 5′-nucleotidase activity. The nuclear membranes isolated from nuclei, specifically bound 125I-labeled human choriogonadotropin and [3H]prostaglandin F to the same extent or significantly more ([3H]prostaglandin E1, P < 0.05) than nuclei themselves, despite the marked losses of chromatin. In summary, our data suggest that gonadotropin and prostaglandins bind to nuclei and that this binding was intrinsic and was primarily associated with the nuclear membrane.  相似文献   

2.
Highly purified nuclei isolated from bovine corpora lutea showed marked enrichment of NAD pyrophosphorylase, a marker for this organelle. Rough endoplasmic reticulum and lysosomal markers were undetectable, whereas plasma membrane and Golgi markers were detectable but not enriched in nuclei. These highly puridied nuclei exhibited specific binding with 125I-labeled human choriogonadotropin, [3H]prostaglandin E1 and [3H]prostaglandin F2 alpha. However, these bindings were only 15.4% (human choriogonadotropin), 7.9% (prostaglandin E1) and 8.9% (prostaglandin F2 alpha) of the plasma membrane binding observed under the same conditions. Washing of nuclei and plasma membranes twice with buffer containing 0.1% Triton X-100 resulted in gonadotropin and prostaglandin F2 alpha binding site and 5'-nucleotidase (EC 3.1.3.5) losses from nuclei that were different from those observed for plasma membranes. More importantly, the washed nuclei exhibited 44% (human choriogonadotropin), 21--26% (prostaglandins) of original specific binding despite virtual disappearance of 5'-nucleotidase activity. The nuclear membranes isolated from nuclei, specifically bound 125I-labeled human choriogonadotropin and [3H]prostaglandin F2 alpha to the same extent or significantly more ([3H]prostaglandin E1, P less than 0.05) than nuclei themselves, despite the marked losses of chromatin. In summary, our data suggest that gonadotropin and prostaglandins bind to nuclei and that this binding was intrinsic and was primarily associated with the nuclear membrane.  相似文献   

3.
Cytokeratin expression in bovine corpora lutea   总被引:1,自引:0,他引:1  
Cytokeratin (CK)-positive cells were obtained from bovine corpora lutea. When cultured, these cells behave like CK-positive endothelial cells obtained from bovine large blood vessels. The origin of CK-positive cells has now been studied in 45 bovine corpora lutea of different estrous cycle stages. Additionally, 7 corpora lutea of pregnant cows were examined. The tissues were grouped into early stage (days 2 to 4), secretory stage (days 5 to 17) and late stage (days 18 to 21) according to gross morphology, wet weight and total progesterone content. One portion of a corpus luteum was used for immunohistochemistry, and another for Western blot analysis. Twenty-six of the 45 corpora lutea showed CK expression, as confirmed by immunostaining and Western blotting. Cytokeratin expression was found in all corporalutea from the early stage, in 14 of 26 corpora lutea from the secretory stage, and 3 of 10 from the late stage. Early stage corpora lutea displayed zonation such that a high number of CK-positive luteal cells occurred in the region of the previous granulosa layer and a very low number in the previous thecal layer. Secretory CK-positive corpora lutea showed uniformly distributed, predominantly large luteal cells. In secretory corpora lutea of group A, CK-positive cells and a distinct microvascular tree were seen, the latter visualized by factor VIII-related antigen immunolabelling of endothelial cells. Group B showed none or very few CK-positive cells. Corpora lutea of pregnant cows behaved like corpora lutea of group B. Roughly 1% of CK-positive cells closely associated with the capillary wall were sometimes reminiscent of endothelial cell sprouts.  相似文献   

4.
Quantitative echotexture analysis of bovine corpora lutea   总被引:5,自引:0,他引:5  
Tom JW  Pierson RA  Adams GP 《Theriogenology》1998,49(7):1345-1352
A study was designed to evaluate the attributes of ultrasound images of bovine ovarian CL throughout the estrous cycle. The ovaries of 8 heifers were examined daily by transrectal ultrasonography for 2 interovulatory intervals (ovulation = Day 0). Ultrasonographic examinations of the ovaries were videotaped daily, and recorded images of the CL were digitized for computer analysis of echotexture (mean pixel value and heterogeneity). Blood samples were taken daily and to determine plasma progesterone concentrations. Corpora lutea were of 2 morphological types, those with a central fluid-filled cavity (n = 6) and those without (n = 9). No differences were detected between CL with or without a fluid-filled cavity; therefore, data were combined. Mean pixel values of ultrasound images of the CL changed (P = 0.0001) during the interovulatory interval; values decreased (P < 0.05) from Day 0 to Day 3 during early growth of the CL, reached a plateau when increases in luteal diameter ceased, and decreased (P < 0.05) to minimal levels at the onset of regression of the CL. The mean pixel value subsequently increased (P < 0.05) after Day 17 to values similar to those at the beginning of the interovulatory interval. A time-dependent effect was not observed for heterogeneity of images of the CL (P > 0.5). The results supported the hypothesis that quantitative changes in luteal echotexture are reflective of changes in the physiologic status of the CL.  相似文献   

5.
The specific binding of 125I-human choriogonadotropin (hCG) to plasma membranes, nuclear membranes, lysosomes, rough endoplasmic reticulum, heavy golgi, and medium and light golgi of bovine corpora lutea was dependent on the amount of protein, 125I-hCG concentration and incubation time. The bound hormone in all the organelles was able to rebind to fresh corresponding organelles. Scatchard analysis revealed a homogenous population of gonadotropin binding sites in plasma membrane, rough endoplasmic reticulum, heavy golgi, and medium and light golgi, whose binding affinities (Kd = 8.6-11.0 X 10(-11) M) were similar but whose number of available gonadotropin binding sites varied. Scatchard analyses of nuclear membranes and lysosome binding, on the other hand, were heterogenous (Nuclear membranes, 11 and 23 X 10(-11) M lysosomes, 3.4 and 130 X 10(-11) M). The rate constants for association (5.9 to 12.1 X 10(6) M-1 S-1) and dissociation (7.4 to 9.0 X 10(-4) S-1) were similar among different subcellular organelles except for nuclear membranes and lysosomes, where rate constants for association were significantly lower. The ligand binding specificity, lower effectiveness of human luteinizing hormone as compared to hCG in competition, the optimal pH, the lack of ionic requirements for binding, and the molecular size of 125I-hCG-gonadotropin binding site complexes solubilized from various intracellular organelles were similar to those observed for plasma membranes. Numerous differences were also observed between intracellular organelles and plasma membranes as well as among intracellular organelles themselves with respect to binding losses due to exposure to low and high pH values, di- and monovalent cations, increasing preincubation temperatures, and a variety of enzymes and protein reagents. The possible reasons for these similarities as well as differences observed are discussed. The differences are viewed as an additional indication that contamination cannot solely explain the presence of gonadotropin binding sites in various intracellular organelles.  相似文献   

6.
7.
8.
In vitro progesterone (P(4)) synthesis by corpora lutea (CL) from the first, second or third ovulation after calving was compared and correlated with their histology and cytology. The CL were removed 7 to 12 days after ovulation, and luteal cells isolated by digestion with collagenase. The response of isolated cells to luteinizing hormone (LH) was determined. Hematoxylin-eosin stained tissues were used to study histology, and the distribution of cell types was estimated by stereological methods. Ovulation occurred within 25 days of calving and interovulatory intervals were short, 12.1 +/- 3.9 days and 12.6 +/- 4.8 days, respectively. The CL removed after first ovulation were smaller and contained fewer live cells than those obtained after subsequent ovulations. Stimulation by LH in vitro was independent of cycle number or day of cycle but was related to the histology of the tissue. The CL composed of large cells (> 24 mum) with vacuolated cytoplasm contained high amounts of P(4) but were not stimulated by LH. Conversely, CL composed of small and medium- sized cells (10 to 20 mum) and/or intact larger cells contained little P(4) but were stimulated by LH. These observations indicate that the response of postpartum CL to LH in vitro is dependent upon the structural integrity of the tissue at the time of removal. Furthermore, these observations suggest that the short life of CL during the postpartum period may not be due to the absence of luteotrophic support, but to the action of a luteolytic mechanism.  相似文献   

9.
The cell membranes isolated from bovine corpora lutea bound 3H-prostaglandin (PG) F2α with high affinity and specificity. The specific binding of 3H-PGF2α was detectable at 10?10M added 3H-PGF2α and reached saturation at 10?7M to 10?6M. Unlabeled PGF2α, as low as 10?9M, inhibited the binding of 3H-PGF2α with complete inhibition occurring at 10?6M. The Scatchard analysis of equilibrium binding data revealed that the PGF2α receptors are heterogeneous: Kd1?5.1 × 10?9M, n?289 fmoles/mg protein; Kd2?1.8 × 10?8M, n?780 fmoles/mg protein. The relative affinities of various other PGs for binding to PGF2α receptors were (PGF2α?100%): PGF1α?17.5; PGE1?0.8; PGE2?22.4; PGA1?0.007; PGB1?0.01. The specificity and affinity of 3H-PGF2α binding is consistent with the possibility that this receptor interaction may reflect an initial event in the action of PGF2α as a luteolytic agent.  相似文献   

10.
Bovine luteal functions are regulated by gonadotropins and eicosanoids. The specific binding sites that presumably mediate the actions of these regulatory agents have previously been characterized in bovine luteal tissue. However, the cellular distribution and/or the cycle phase dependency of these binding sites have never been investigated. In the present study, we investigated these parameters by using quantitative light microscope autoradiography. The results showed that both small and large luteal cells contained binding sites for LH/hCG, prostaglandin (PG)E2, PGF2 alpha, PGI2, and leukotriene (LT)C4. In addition, luteal blood vessels contained LH/hCG and LTC4 binding sites and luteal fibroblasts contained PGE2 binding sites. On a per cell basis, there were more binding sites for all ligands in large luteal cells as compared to small or nonluteal cells. After correction for the cellular area differences, small luteal cells contained more LH/hCG, PGE2, PGI2, and LTC4 binding sites, while large luteal cells contained more PGF2 alpha binding sites. The small and large luteal cell binding of hCG, PGE2, PGI2, and LTC4 increased from early to mid luteal phase, followed by a decline in the late luteal phase. PGF2 alpha binding, on the other hand, increased from early to late luteal phase. In contrast to luteal cells, binding of hCG and LTC4 to luteal blood vessels and binding of PGE2 to luteal fibroblasts did not change during the cycle. These results suggest that LH/hCG and eicosanoid regulation of luteal function is more complex than previously envisioned and it involves both small and large luteal cells and, in some cases, also nonluteal cells.  相似文献   

11.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

12.
13.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

14.
The subcellular distribution of prostaglandin (PG) E1, F2α and gonadotropin receptors in bovine corpora lutea was critically examined by preparing various subcellular fractions, assaying for various marker enzymes to assess the purity and examining 3H-PGE1, 3H-PGF2α and 125I-human lutropin (hLH) specific binding. The marker enzyme data suggested that subcellular fractions were relatively pure with little or no cross contamination. The binding of 3H-PGs and 125I-hLH was markedly enriched in plasma membranes with respect to homogenate. The other subcellular fractions also exhibited binding despite very little or no detectable 5′-nucleotidase activity. If 5′-nucleotidase was assumed to lack sensitivity and reliability to detect minor contamination with plasma membranes and 3H-PGs or 125I-hLH binding were used as sensitive plasma membrane markers, it was still difficult to explain binding in other fractions based on plasma membrane contamination. Therefore, these results lead to the inevitable conclusion that plasma membranes were primary (or one of the primary) but not exclusive sites for PGE1, PGF2α and gonadotropin receptors.  相似文献   

15.
Samples from corpus haemorrhagicum, mid-cycle corpus luteum (CL) and late-cycle CL were tested for their abilities to stimulate neovascularization of chorioallantoic membranes (CAM) of developing chicks. Responses were graded from 0 to 4 (4 being the greatest response). Luteal tissue implants from each stage of the oestrous cycle stimulated growth of CAM blood vessels, and vascular responses increased with age of CL. Implants from late-cycle CL were typically graded 3 or 4. Luteal tissues from several stages of development were also incubated for 6 h in serum-free medium containing no hormone, LH, PGF-2 alpha or both hormones. Media conditioned by luteal tissues were assayed for progesterone and tested for their ability to stimulate mitogenesis and migration of bovine aortic endothelial cells in vitro. All media conditioned by luteal tissues stimulated mitogenesis and migration of endothelial cells, but media from late-cycle CL exhibited the greatest activity. Luteinizing hormone significantly increased in-vitro secretion of a factor(s) that stimulated migration of endothelial cells. PGF-2 alpha alone had no effect on production of endothelial cell mitogen or migration-stimulating factor(s) from luteal incubations; however, the ability of LH to enhance secretion of the migration-stimulating factor(s) was blocked by PGF-2 alpha. This study demonstrates that angiogenic activity of bovine luteal tissues increases with age of the CL and in-vitro secretion of angiogenic factor is responsive to hormones known to regulate luteal function.  相似文献   

16.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
A prostaglandin F2 alpha receptor localized in plasma membranes of bovine corpus luteum cells was solubilized by treatment with Triton X-100. Sepharose chromatographies of ([3H]prostaglandin F2 alpha)-receptor complex gave a Stokes' radius of 630 nm. In the absence of detergent, aggregated forms of the receptor appeared. Sedimentation experiments of solubilized receptor in sucrose/H2O and sucrose/2H2O density gradients gave the following values: sedimentation coefficient (S20, w) 4.6 S; partial specific volume (VB) 0.78 cm3/g and frictional ratio (f/fo) 1.6. Based on the sedimentation coefficient and the Stokes' radius and assuming that the receptor is a non-glycosylated protein the molar mass of the receptor-(Triton X-100) complex was 144000 g/mol. The VB value indicated that ca. 26% of the weight represented bound detergent and that the molecular weight of the prostaglandin F2 alpha receptor is approximately 107000.  相似文献   

19.
20.
In mice, exposure of the uterus to seminal plasma at mating initiates an inflammatory response within the endometrium, which is characterized by production of cytokines that recruit and activate leukocytes. We hypothesized that this seminal plasma-induced inflammatory response would extend to the ovary, increasing leukocyte abundance within corpora lutea and potentially enhancing progesterone synthesis. Female mice mated to males with their seminal vesicles surgically removed exhibited fewer macrophages within corpora lutea on the day after mating, compared with females mated to vasectomized or normal, intact males. The mean number of F4/80-positive macrophages and major histocompatibility complex (MHC) class II-positive activated macrophages was approximately 2-fold fewer in the absence of seminal vesicle fluid. The effects of seminal plasma on macrophage abundance subsided by Day 4 and were not accompanied by a change in serum progesterone levels during luteinization (Days 1, 2, or 4 after mating) or luteolysis (Days 6 or 9). In vitro secretion of progesterone from corpora lutea cultured with or without LH also did not differ between treatment groups. There was no effect of seminal plasma deficiency in males on the number of ovulated ova or corpora lutea in females. These results imply that seminal plasma exposure of the female reproductive tract at mating augments the macrophage population of newly formed corpora lutea, although these additional macrophages seem not to play a role in steroidogenesis and may instead be involved in tissue remodeling within corpora lutea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号