首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang JL  Zhu CB  Cao XD  Wu GC 《Regulatory peptides》1999,79(2-3):159-163
Nociceptin/orphanin FQ (nociceptin/OFQ), a newly discovered heptadecapeptide has been regarded as an endogenous ligand for orphan opioid receptor. The present study was designed to investigate the effect of nociceptin/OFQ on pain response and opioid analgesia in the rat formalin test. The results showed that intracerebroventricular injection of 1 microg nociceptin/OFQ enhanced the pain response, and 0.1 or 0.5 microg nociceptin/OFQ had no effect on formalin-induced pain. When 0.1 or 1 microg nociceptin/OFQ were used together with mu-, delta-, or kappa-opioid receptor agonists, endomorphin-1, DSLET or U50488H, respectively, it attenuated mu- and kappa- but not delta-receptor mediated analgesia. On the other hand, intrathecal injection of nociceptin/OFQ (0.1, 1 and 5 microg) reduced the pain response in the formalin test. In conclusion, nociceptin/OFQ potentiated formalin-induced pain response and antagonized opioid analgesia in the rat brain but inhibited pain response in the spinal cord.  相似文献   

2.
The nociceptin receptor (NOP) and its ligand nociceptin/orphanin FQ (N/OFQ) have been shown to exert a modulatory effect on immune cells during sepsis. We evaluated the suitability of an experimental lipopolysaccharide (LPS)-induced sepsis model for studying changes in the nociceptin system. C57BL/6 mice BALB/c mice and Wistar rats were inoculated with different doses of LPS with or without a nociceptin receptor antagonist (UFP-101 or SB-612111). In C57BL/6 mice LPS 0.85 mg/kg injection produced no septic response, whereas 1.2 mg/kg produced a profound response within 5 h. In BALB/c mice, LPS 4 mg/kg produced no response, whereas 7 mg/kg resulted in a profound response within 24 h. In Wistar rats LPS 15 mg/kg caused no septic response in 6/10 animals, whereas 25 mg/kg resulted in marked lethargy before 24 h. Splenic interleukin-1β mRNA in BALB/c mice, and serum TNF-α concentrations in Wistar rats increased after LPS injection in a dose-dependent manner, but were undetectable in control animals, indicating that LPS had stimulated an inflammatory reaction. IL-1β and TNF-α concentrations in LPS-treated animals were unaffected by administration of a NOP antagonist. Similarly NOP antagonists had no effect on survival or expression of mRNA for NOP or ppN/OFQ (the N/OFQ precursor) in a variety of tissues. In these animal models, the dose–response curve for LPS was too steep to allow use in survival studies and no changes in the N/OFQ system occurred within 24 h. We conclude that LPS-inoculation in rodents is an unsuitable model for studying possible changes in the NOP-N/OFQ system in sepsis.  相似文献   

3.
The role(s) of central Galpha-proteins in the regulation of cardiovascular and renal function is unknown. We examined how inhibition/downregulation of central Galphai/Galphao, Galphaz or Galphaq proteins altered the characteristic cardiovascular (depressor), renal excretory (diuretic), and plasma AVP (inhibitory) responses to intracerebroventricular injection of nociceptin/orphanin FQ (N/OFQ) in rats. Before investigation, rats were pretreated intracerebroventricularly with saline vehicle (5 microl, 48 h, n=6), pertussis toxin (PTX; 48-h, 1 microg, n=6), or Galphaz, Galphaq, or scrambled oligodeoxynucleotide (ODN) (25 microg, 24 h, n=6 per group). On the study day, intracerebroventricular N/OFQ (5.5 nmol) or vehicle (5 microl) was injected into pretreated conscious rats. Mean arterial pressure (MAP) and heart rate (HR) were recorded, and urine was collected for 90 min. In vehicle or scrambled ODN groups, intracerebroventricular N/OFQ decreased MAP and HR and produced water diuresis (sensitive to UFP-101, N/OFQ receptor antagonist). The hypotension and bradycardia, but not diuresis, to N/OFQ were abolished in PTX-pretreated rats. In contrast, intracerebroventricular ODN pretreatment markedly blunted (Galphaz) or augmented (Galphaq) the diuresis to intracerebroventricular N/OFQ. In separate studies, the action of central N/OFQ to decrease plasma AVP levels in na?ve water-restricted rats was differentially altered by intracerebroventricular Galphaz ODN (blunted) and Galphaq ODN (augmented) pretreatment. These studies demonstrate central Galphai/Galphao activity mediates intracerebroventricular N/OFQ's cardiovascular depressor function. Alternatively, central Galphaz (inhibitory) and Galphaq (stimulatory) activity differentially modulates AVP release to control the pattern of diuresis to intracerebroventricular N/OFQ. These findings highlight the novel selective central Galpha-subunit protein-mediated control of cardiovascular vs. renal excretory function.  相似文献   

4.
The purpose of this study was to investigate the effects of [Nphe1]nociceptin(1-13)-NH2 on nociceptin-induced decreases in mean arterial pressure (MAP), heart rate (HR), and hindquarters vascular bed resistance (HVBR) of the anesthetized rat. The results showed that i.c.v. or i.v. [Nphe1]nociceptin(1-13)-NH2 (1.5-12 nmol/kg and 5-120 nmol/kg, respectively) could antagonize the depressor effects of i.c.v. or i.v. nociceptin (3 and 30 nmol/kg, respectively) on MAP and HR. Furthermore, [Nphe1]nociceptin(1-13)-NH2 (5-120 nmol/kg) could reverse nociceptin (30 nmol/kg)-induced decrease of HVBR. However, [Nphe1]nociceptin(1-13)-NH2 had no significant effects on similar effects induced by morphine. Our results suggest that [Nphe1]nociceptin(1-13)-NH2 acts as a selective antagonist of the nociceptin receptor in the cardiovascular system of the rat.  相似文献   

5.
Zhang X  Zhu CB  Shu H  Liu J  Wang YY  Wang Y  Liu HY 《生理学报》1999,51(5):580-584
孤啡肽(OrphaninFQ,OFQ)是1995年底发现的内阿片肽,一级结构与强啡肽A很相似,但生物学作用与其它内阿片肽有所不同。本工作采用侧脑室及核团微量注射的方法,观察了中枢OFQ对大鼠心血管活动的影响。结果表明:侧脑室注射1、10μgONQ可明显降低大鼠平均动脉压(MAP)及心率(HR);侧脑室预先注射4μg纳洛酮不影响1μgOWQ的降压及减慢心率的效应。下丘脑视前区(POA)微量注射1μgOFQ也可降低血压、减慢心率。结果表明,中枢OFQ与其它内阿片肽相似,可抑制心血管活动,且其抑制作用不是通过μ、δ、κ阿片受体介导。POA为中枢OFQ抑制心血管活动的靶区之一。  相似文献   

6.
Vitale G  Arletti R  Ruggieri V  Cifani C  Massi M 《Peptides》2006,27(9):2193-2200
Different reports suggest that nociceptin/orphanin FQ (N/OFQ) may have either anxiolytic- or anxiogenic-like effect in rodents. Since N/OFQ elicits hypolocomotion, which undergoes rapid tolerance, and hypolocomotion may be associated to emotional consequences, the present study was designed to investigate the effect of N/OFQ on anxiety after development of tolerance to its hypolocomotor effect. The effect of single or double intracerebroventricular (i.c.v.) injection of N/OFQ was evaluated on anxiety-related behaviors in rats, in the elevated plus maze (EPM) and conditioned defensive burying (CDB) tests. After single administration, N/OFQ displayed an anxiogenic-like pattern of response on the elevated plus maze but hypolocomotion was also observed. Conversely, in the CDB test, N/OFQ induced a clear-cut anxiolytic pattern. To produce tolerance to N/OFQ-induced hypolocomotion the peptide was administered by two i.c.v. injections separated by 120 min; in these conditions it decreased the expression of anxiety-related behaviors in both tests without affecting locomotor activity. The nociceptin/orphanin FQ peptide (NOP) receptor antagonist UFP-101 significantly reduced the effects of N/OFQ to control values in either tests. Corticosterone levels were significantly increased after a single N/OFQ administration (not in a dose-dependent manner) but this increase did not reach significance after double administration (1 nmol/rat). Our results support the idea that N/OFQ may act as an anxiolytic-like agent in the rat; the apparent anxiogenic-like effect observed following its single administration in the EPM may be consequent to its effect on locomotion.  相似文献   

7.
The goal of the present research was try to explain the physiological mechanism for the influence of the geomagnetic field (GMF) disturbance, reflected by the indices of the geomagnetic activity (K, K(p), A(k), and A(p) indices), on cardiovascular regulation. One hundred forty three experimental runs (one daily) comprising 50 min hemodynamic monitoring sequences were carried out in rabbits sedated by pentobarbital infusion (5 mg/kg/h). We examined the arterial baroreflex effects on the short term blood pressure and heart rate (HR) variabilities reflected by the standard deviation (SD) of the average values of the mean femoral arterial blood pressure (MAP) and the HR. Baroreflex sensitivity (BRS) was estimated from blood pressure/HR response to intravenous (i.v.) bolus injections of vasoconstrictor (phenylephrine) and vasodilator (nitroprusside) drugs. We found a significant negative correlation of increasing GMF disturbance (K(p)) with BRS (P = 0.008), HR SD (P =0.022), and MAP SD (P = 0.002) signifying the involvement of the arterial baroreflex mechanism. The abrupt change in geomagnetic disturbance from low (K = 0) to high (K = 4-5) values was associated with a significant increase in MAP (83 +/- 5 vs. 99 +/- 5 mm Hg, P = 0.045) and myocardial oxygen consumption, measured by MAP and HR product (24100 +/- 1800 vs. 31000 +/- 2500 mm Hg. bpm, P = 0.034), comprising an additional cardiovascular risk. Most likely, GMF affects brainstem and higher neural cardiovascular regulatory centers modulating blood pressure and HR variabilities associated with the arterial baroreflex.  相似文献   

8.
The prolactin secretory response to subcutaneous injection of orphanin FQ/nociceptin (OFQ/N) was measured in wild-type and OFQ/N knockout mice. These injections were given with and without isoflurane anesthesia, to determine if isoflurane would affect the prolactin secretory response. OFQ/N injection significantly increased prolactin levels in males and females, regardless of genotype, with a more robust response in females. Isoflurane pretreatment did not affect prolactin levels in controls or in animals injected with OFQ/N. This is the first report that exogenously administered OFQ/N stimulates prolactin secretion in mice and that brief isoflurane exposure does not significantly affect this response.  相似文献   

9.
Kim KW  Chung YJ  Han JH  Woo RS  Park EY  Seul KH  Kim SZ  Cho KW  Kim SH 《Life sciences》2002,70(9):1065-1074
Nociceptin (N/OFQ) is a novel heptadecapeptide with an amino acid sequence similar to that of endogenous opioid peptide dynorphin A. Dynorphin have been reported to increase the secretion of atrial natriuretic peptide (ANP) via selective activation of kappa-opioid receptor in cultured atrial cardiocytes. The present study was designed to investigate the direct effect of N/OFQ on the ANP secretion in cultured neonatal rat cardiac myocytes via N/OFQ receptor (NOP) activation. The secretion of ANP from cultured neonatal cardiac myocytes was increased in terms of incubation time. N/OFQ, at a dose of 0.3, 1, 3, and 10 microM, caused increases in ANP secretion in a dose-dependent manner. The N/OFQ-induced ANP secretion was completely antagonized by antagonists of NOP, 1 microM each of [Phe1 (CH2-NH) Gly2] nociceptin (1-13)-NH2 ([FG]N/OFQ(1-13)NH2) or naloxone benzoylhydrazone. In contrast, naloxone (1 microM), the non-selective opioid receptor antagonist, did not alter ANP response to N/OFQ. N/OFQ at 3 microM inhibited basal and forskolin-stimulated cAMP production, which was partially antagonized with the pretreatment of [FG]N/OFQ(1-13)NH2. An increase in ANP secretion by N/OFQ was also partially blocked by the pretreatment of forskolin. Homologous competition studies in neonatal cardiomyocyte membranes revealed the presence of two distinct sites. The high affinity site (10.9 +/- 1.6 nM) was far less abundant than the low affinity site. Therefore, these results suggest that N/OFQ causes an increase in ANP secretion in cultured neonatal cardiac myocytes by decreasing cAMP through its binding sites.  相似文献   

10.
The influence of peripheral nociceptin/orphanin FQ (N/OFQ) on cold restraint-induced gastric mucosal damage in the rat was investigated. Exposure to cold-restraint for 3 and 4h caused the formation of hemorrhagic lesions in the glandular portion of the stomach. N/OFQ dose-dependently decreased lesion formation, in the range 0.03-1 microg/kg/h i.p. Its effect was reversed by the selective NOP receptor antagonist [Nphe(1)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-101), 30 microg/kg/h ip. The selective NOP receptor agonist [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112), 0.01-0.3 microg/kg/h i.p., similarly reduced lesion formation. Light and scanning electron microscopy confirmed the protective activity of N/OFQ. Cold-restraint stress causes a reduction in mucus content and in adhering mucus layer, partly counteracted by N/OFQ. These results suggest that N/OFQ counteracts acute stress-induced gastric mucosal damage by interacting with NOP receptor and by influencing mucous cell activity.  相似文献   

11.
The influence of orphanin FQ/nociceptin (OFQ/N) on the morphine-withdrawal symptom was investigated. Withdrawal syndrome was induced in the morphine-dependent rats by an intraperitoneal (i.p.) injection of 2 mg/kg naloxone hydrochloride--an opioid receptors antagonist. Wet-dog shakes were used as a measure of the abstinence syndrome. Intraventricular injections of OFQ/N (5-20 microg/animal) caused significant inhibition of the withdrawal signs at doses between 15-20 microg, in the morphine-dependent rats. OFQ/N alone did not change behavior of the morphine-dependent animals. The obtained results indicate that OFQ/N can inhibit the morphine withdrawal symptoms induced by naloxone.  相似文献   

12.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

13.
Ghrelin, a neuropeptide originally known for its growth hormone-releasing and orexigenic properties, exerts important pleiotropic effects on the cardiovascular system. Growing evidence suggests that these effects are mediated by the sympathetic nervous system. The present study aimed at elucidating the acute effect of ghrelin on sympathetic outflow to the muscle vascular bed (muscle sympathetic nerve activity, MSNA) and on baroreflex-mediated arterial blood pressure (BP) regulation in healthy humans. In a randomized double-blind cross-over design, 12 lean young men were treated with a single dose of either ghrelin 2 μg/kg iv or placebo (isotonic saline). MSNA, heart rate (HR), and BP were recorded continuously from 30 min before until 90 min after substance administration. Sensitivity of arterial baroreflex was repeatedly tested by injection of vasoactive substances based on the modified Oxford protocol. Early, i.e., during the initial 30 min after ghrelin injection, BP significantly decreased together with a transient increase of MSNA and HR. In the course of the experiment (>30 min), BP approached placebo level, while MSNA and HR were significantly lower compared with placebo. The sensitivity of vascular arterial baroreflex significantly increased at 30-60 min after intravenous ghrelin compared with placebo, while HR response to vasoactive drugs was unaltered. Our findings suggest two distinct phases of ghrelin action: In the immediate phase, BP is decreased presumably due to its vasodilating effects, which trigger baroreflex-mediated counter-regulation with increases of HR and MSNA. In the delayed phase, central nervous sympathetic activity is suppressed, accompanied by an increase of baroreflex sensitivity.  相似文献   

14.
Chen LY  Huang JX  Yu LC 《Regulatory peptides》2008,151(1-3):43-47
Nociceptin/orphanin FQ (N/OFQ) is a heptadecapeptide, which has been identified as an endogenous ligand of the opioid receptor-like (ORL1) receptor. The present study investigated the nociceptive effect of intra-nucleus accumbens (intra-NAc) injection of OFQ, and the involvement of ERK pathway in such effect. Intra-NAc injection of OFQ (0.1, 0.5, 1 nmol) dose-dependently decreased the nociceptive thresholds on the hindpaw withdrawal response to thermal and mechanical stimulation in rats. Moreover, the intra-NAc injection of OFQ-induced decreases in HWLs were antagonized by intra-NAc injection of (Nphe(1))nociceptin(1-13)NH(2), an antagonist of ORL1 receptor, in a dose-dependent way. Furthermore, the OFQ-induced nociception could be attenuated by pretreatment with the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(2-aminopheylthio)butadiene (U0126). Our results demonstrate that OFQ induces nociceptive effects in NAc. The effect was blocked by the antagonist (Nphe(1))nociceptin(1-13)NH(2) and attenuated by U0126, suggesting that the activation of ERK pathways is involved in the OFQ-induced nociceptive effect in the NAc of rats.  相似文献   

15.
Abstract: The recently identified 17-amino acid peptide nociceptin (orphanin FQ) is the endogenous ligand for the opioid receptor-like-1 (ORL-1) receptor. A physiologic role for nociceptin (OFQ) activation of the ORL-1 receptor (OFQR) may be to modulate opioid-induced analgesia. The molecular mechanism by which nociceptin (OFQ) and ORL-1 (OFQR) modify opioid-stimulated effects, however, is unclear. Both ORL-1 (OFQR) and opioid receptors mediate pertussis toxin (PTX)-sensitive signal transduction, indicating these receptors are capable of coupling to Gi/Go proteins. This study determines that nociceptin stimulates an intracellular signaling pathway, leading to activation of mitogen-activated protein (MAP) kinase in CHO cells expressing ORL-1 receptor (OFQR). Nociceptin (OFQ)-stimulated MAP kinase activation was inhibited by PTX or by expression of the carboxyl terminus of β-adrenergic receptor kinase (βARKct), which specifically blocks Gβγ-mediated signaling. Expression of the proline-rich domain of SOS (SOS-PRO), which inhibits SOS interaction with p21ras, also attenuated nociceptin (OFQ)-stimulated MAP kinase activation. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY294002 reduced nociceptin (OFQ)-stimulated MAP kinase activation, whereas inhibition of protein kinase C (PKC) activity by bisindolylmaleimide I or cellular depletion of PKC had no effect. In a similar manner, in cells expressing μ-opioid receptor, [d -Ala2,N-Me-Phe4,Gly-ol]-enkephalin (DAMGO; a μ-opioid receptor-selective agonist) stimulated PTX-sensitive MAP kinase activation that was inhibited by wortmannin, LY294002, βARKct expression, or SOS-PRO expression but not affected by inhibition of PKC activity. These results indicate that both ORL-1 (OFQR) and μ-opioid receptors mediate MAP kinase activation via a signaling pathway using the βγ-subunit of Gi, a PI-3K, and SOS, independent of PKC activity. In cells expressing both ORL-1 (OFQR) and μ-opioid receptors, pretreatment with nociceptin decreased subsequent nociceptin (OFQ)- or DAMGO-stimulated MAP kinase activation. In contrast, pretreatment of cells with DAMGO decreased subsequent DAMGO-stimulated MAP kinase but had no effect on subsequent nociceptin (OFQ)-stimulated MAP kinase activation. These results demonstrate that nociceptin (OFQ) activation of ORL-1 (OFQR) can modulate μ-opioid receptor signaling in a cellular system.  相似文献   

16.

Chronic orthostatic intolerance (COI) is defined by changes in heart rate (HR), blood pressure (BP), respiration, symptoms of cerebral hypoperfusion and sympathetic overactivation. Postural tachycardia syndrome (POTS) is the most common form of COI in young adults and is defined by an orthostatic increase in heart rate (HR) of?≥?30 bpm in the absence of orthostatic hypotension. However, some patients referred for evaluation of COI symptoms do not meet the orthostatic HR response criterion of POTS despite debilitating symptoms. Such patients are ill defined, posing diagnostic and therapeutic challenges. This study explored the relationship among cardiovascular autonomic control, the orthostatic HR response, EtCO2 and the severity of orthostatic symptoms and fatigue in patients referred for evaluation of COI. Patients (N?=?108) performed standardized testing protocol of the Autonomic Reflex Screen and completed the Composite Autonomic Symptom Score (COMPASS-31) and the Fatigue Severity Scale (FSS). Greater severity of COI was associated with younger age, larger phase IV amplitude in the Valsalva maneuver and lower adrenal baroreflex sensitivity. Greater fatigue severity was associated with a larger reduction in ETCO2 during 10 min of head-up tilt (HUT) and reduced low-frequency (LF) power of heart rate variability. This study suggests that hemodynamic changes associated with the baroreflex response and changes in EtCO2 show a stronger association with the severity of orthostatic symptoms and fatigue than the overall orthostatic HR response in patients with COI.

  相似文献   

17.
Metabolism of orphanin FQ/nociceptin (OFQ/N) was studied in the spinal cord of rats. The heptadecapeptide was efficiently cleaved by a neutral serine endopeptidase, thus releasing the major metabolite, OFQ/N(1-11), further truncated to the final product, OFQ/N(1-6). Biologic activity of this latter fragment was tested in vivo, after intracerebroventricular and intrathecal injections. Hexapeptide exhibited a bi-phasic effect, causing antinociception up to 10 min after injection, followed by a hyperalgesia. The analgesic effect was blocked by naloxone and hyperalgesia was inhibited by NMDA--and NMDA/glycine site antagonists. The results indicate that shorter nociceptin fragments still possess their biologic activity though possibly acting via receptors other than ORL1.  相似文献   

18.
The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been suggested to play a facilitatory role in kainate seizure expression. Furthermore, mRNA levels for the N/OFQ precursor are increased following kainate seizures, while its receptor (NOP) density is decreased. These data suggest increased N/OFQ release. To obtain direct evidence that this is the case, we have developed a microdialysis technique, coupled with a sensitive radioimmunoassay, that allows measurement of N/OFQ release from the hippocampus and thalamus of awake, freely moving animals. In both these brain areas, the spontaneous N/OFQ efflux decreased by approximately 50% and 65% when Ca2+ was omitted and when tetrodotoxin was added to the perfusion medium, respectively. Perfusion of the dialysis probe with high K+ increased N/OFQ release (approximately threefold) in a Ca2+-dependent and tetrodotoxin-sensitive manner. Kainate seizures caused a twofold increase in N/OFQ release followed, within 3 h, by a return to baseline levels. Approximately 5 h after kainate, a late increase in N/OFQ release was observed. On the following day, when animals were having only low grade seizures, N/OFQ release was not significantly different from normal. These phenomena were observed with similar patterns in the hippocampus and in the thalamus. The present data indicate that acute limbic seizures are associated with increased N/OFQ release, which may prime the molecular changes described above, i.e. cause down-regulation of NOP receptors and activation of N/OFQ biosynthesis.  相似文献   

19.
Early evidence from long-duration flights indicates general cardiovascular deconditioning, including reduced arterial baroreflex gain. The current study investigated the spontaneous baroreflex and markers of cardiovascular control in six male astronauts living for 2-6 mo on the International Space Station. Measurements were made from the finger arterial pressure waves during spontaneous breathing (SB) in the supine posture pre- and postflight and during SB and paced breathing (PB, 0.1 Hz) in a seated posture pre- and postflight, as well as early and late in the missions. There were no changes in preflight measurements of heart rate (HR), blood pressure (BP), or spontaneous baroreflex compared with in-flight measurements. There were, however, increases in the estimate of left ventricular ejection time index and a late in-flight increase in cardiac output (CO). The high-frequency component of RR interval spectral power, arterial pulse pressure, and stroke volume were reduced in-flight. Postflight there was a small increase compared with preflight in HR (60.0 ± 9.4 vs. 54.9 ± 9.6 beats/min in the seated posture, P < 0.05) and CO (5.6 ± 0.8 vs. 5.0 ± 1.0 l/min, P < 0.01). Arterial baroreflex response slope was not changed during spaceflight, while a 34% reduction from preflight in baroreflex slope during postflight PB was significant (7.1 ± 2.4 vs. 13.4 ± 6.8 ms/mmHg), but a smaller average reduction (25%) during SB (8.0 ± 2.1 vs. 13.6 ± 7.4 ms/mmHg) was not significant. Overall, these data show no change in markers of cardiovascular stability during long-duration spaceflight and only relatively small changes postflight at rest in the seated position. The current program routine of countermeasures on the International Space Station provided sufficient stimulus to maintain cardiovascular stability under resting conditions during long-duration spaceflight.  相似文献   

20.
[(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) has been designed as a novel ligand for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) by combining into the same peptide different chemical modifications reported to increase N/OFQ potency. In vitro data obtained in the electrically stimulated mouse vas deferens demonstrated that UFP-112 behaved as a high potency (pEC(50) 9.43) full agonist at the NOP receptor. UFP-112 effects were sensitive to the NOP antagonist UFP-101 but not to naloxone and no longer evident in tissues taken from NOP(-/-) mice. In vitro half life of UFP-112 in mouse plasma and brain homogenate was 2.6- and 3.5-fold higher than that of N/OFQ. In vivo, in the mouse tail withdrawal assay, UFP-112 (1-100pmol, i.c.v.) mimicked the actions of N/OFQ producing pronociceptive effects after i.c.v. administration and antinociceptive effects when given i.t.; in both cases, UFP-112 was approximately 100-fold more potent than the natural peptide and produced longer lasting effects. UFP-112 also mimicked the hyperphagic effect of N/OFQ producing a bell shaped dose response curve with the maximum reached at 10pmol. The hyperphagic effects of N/OFQ and UFP-112 were absent in NOP(-/-) mice. Equi-effective high doses of UFP-112 (0.1nmol) and N/OFQ (10nmol) were injected i.c.v. in mice and spontaneous locomotor activity recorded for 16h. N/OFQ produced a clear inhibitory effect which lasted for 60min while UFP-112 elicited longer lasting effects (>6h). In conscious rats, UFP-112 (0.1 and 10nmol/kg, i.v.) produced a marked and sustained decrease in heart rate, blood pressure, and urinary sodium excretion and a profound increase in urine flow. Collectively, these findings demonstrate that UFP-112 behaves in vitro and in vivo as a highly potent and selective ligand able to produce full and long lasting activation of NOP receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号