首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J G Sheng  D L Xu  H Z Yu  X R Xu  Q M Tang 《Life sciences》1987,40(20):2007-2010
The administration of MPTP to man and monkey has been shown to cause a neurotoxic effect on the nigrostriatal dopamine system. MPTP was injected in C57-BL black mice, 36 mg per kg for 7 days, which resulted in permanent reduction of dopamine and serotonin levels in the striatum. In the mice pretreated with PLG, although the striatal dopamine level was also reduced, mean dopamine and serotonin levels were significantly higher than in mice given MPTP alone. It is concluded that PLG could protect at least partially the neurotoxic effect of MPTP.  相似文献   

2.
A series of 2-(2,3-dimethoxyphenyl)-4-(aminomethyl)imidazole derivatives was prepared and their affinity for dopamine D2 and D3 receptors was measured using in vitro binding assays. Several oxadiazole analogues were also prepared and tested for their affinity for dopamine D2 and D3 receptors. The results of receptor binding studies indicated that the incorporation of an imidazole moiety between the phenyl ring and the basic nitrogen did not significantly increase the selectivity for dopamine D3 receptors, whereas the incorporation of an oxadiazole at the same region resulted in a total loss of affinity for both dopamine receptor subtype binding sites. The most selective compound in this series is 2-(5-bromo-2,3-dimethoxyphenyl)-4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolinomethyl)imidazole (5i), which has a D3 receptor affinity of 21 nM and a 7-fold selectivity for D3 versus D2 receptors. The binding affinity for σ1 and σ2 receptors was also measured, and the results showed that several analogues were selective σ1 receptor ligands.  相似文献   

3.
An endogenous modulator(s) of the dopamine receptor(s) in bovine and rat brain striatum was detected by demonstrating that water extracts of the striatum inhibited [3H]apomorphine binding. This modulator(s) was partially purified by methanol extraction and then successive ion exchange chromatographies on SP-Sephadex C-25 and QAE-Sephadex A-25, and gel chromatography on Sephadex G-25. The partially purified (about 1,500-fold) modulator was a fluorescamine-positive substance, Mr = 500 1000, which was heat-stable (95°C, 10 min), and was destroyed by acid- and alkali-treatment, but not by treatments with various peptidases. The modulator inhibited binding of the dopamine agonist, [3H]apomorphine non-competitively, but did not inhibit binding of the dopamine antagonist, [3H]spiroperidol. Direct injection of the modulator into rat brain striatum depressed apomorphine-induced locomotor activity. Moreover the modulator inhibited dopamine-sensitive adenylate cyclase activity. These findings indicate that the modulator acts at a site(s) other than the ligand binding site of the dopamine receptor(s) and modulates the activities of dopamine agonists.  相似文献   

4.
Interaction of piperazine-based dopamine transporter inhibitor GBR12909 with rat dopamine transporters has been studied by means of competition kinetics analysis, employing [(3)H]PE2I as the reporter ligand. It has been found that GBR12909 is capable of inducing so-called "slow isomerization step" upon binding to DAT, probably consisting of a conformational change in the transporter protein. The mechanism exhibited by GBR12909 appears to be similar to the mechanism of PE2I that has been reported earlier and also confirms previous observations for GBR12783 made by Do-Rego and co-workers using dopamine uptake data. It appears that the isomerization phenomenon previously described for PE2I is not limited to tropane-based DAT inhibitors, but is, in fact, a general property of dopamine transporter protein, similar to "isomerization" process reported previously for G-protein coupled receptors. The rapid first step of association of the GBR 12909 is characterized by the equilibrium constant K(L)=34+/-11nM and the second slow step by k(i)=0.033+/-0.005s(-1).  相似文献   

5.
We characterized dopamine toxicity in human neuroblastoma SH-SY5Y cells as a direct effect of dopamine on cell reductive power, measured as NADH and NADPH cell content. In cell incubations with 100 or 500 microM dopamine, the accumulation of dopamine inside the cell reached a maximum after 6 h. The decrease in cell viability was 40% and 75%, respectively, after 24 h, and was not altered by MAO inhibition with tranylcypromine. Dopamine was metabolized to DOPAC by mitochondrial MAO and, at 500 microM concentration, significantly reduced mitochondrial potential and oxygen consumption. This DA concentration caused only a slight increase in cell peroxidation in the absence of Fe(III), but a dramatic decrease in NADH and NADPH cell content and a concomitant decrease in total cell NAD(P)H/NAD(P)+ and GSH/GSSG and in mitochondrial NADH/NAD+ ratios. Dopaminechrome, a product of dopamine oxidation, was found to be a MAO-A inhibitor and a strong oxidizer of NADH and NADPH in a cell-free system. We conclude that dopamine may affect NADH and NADPH oxidation directly. When the intracellular concentrations of NAD(P)H and oxidized dopamine are similar, NAD(P)H triggers a redox cycle with dopamine that leads to its own consumption. The time-course of NADH and NADPH oxidation by dopamine was assessed in cell-free assays: NAD(P)H concentration decreased at the same time as dopamine oxidation advanced. The break in cell redox equilibrium, not excluding the involvement of free oxygen radicals, could be sufficient to explain the toxicity of dopamine in dopaminergic neurons.  相似文献   

6.
Apparent affinities (Ki) of (E)- and (Z)-N-(iodoallyl)spiperone [E)- and (Z)-NIASP) for dopamine D2 and serotonin 5-HT2 receptors were determined in competition binding assays. (Z)-NIASP (Ki 0.35 nM, D2; Ki 1.75 nM, 5-HT2) proved slightly more potent and selective for D2 sites in vitro than (E)-NIASP (Ki 0.72 nM, D2; Ki 1.14 nM, 5-HT2). In vivo, radioiodinated (E)- and (Z)-[125I]-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D2 receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective, dose-dependent blockade of (E)-[125I]-NIASP uptake was found for drugs binding to dopamine D2 sites, while drugs selective for serotonin 5-HT2, alpha 1-adrenergic and dopamine D1 receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-[125I]-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-[125I]-NIASP binds with high selectivity and specificity to dopamine D2 sites in vivo.  相似文献   

7.
Dopamine is a catecholamine neurotransmitter necessary for motor functions. Its deficiency has been observed in several neurological disorders, but replacement of endogenous dopamine via oral or parenteral delivery is limited by poor absorption, rapid metabolism and the inability of dopamine to cross the blood-brain barrier. The intranasal administration of dopamine, however, has resulted in improved central nervous system (CNS) bioavailability compared to that obtained following intravenous delivery. Portions of the nasal mucosa are innervated by olfactory neurons expressing dopamine transporter (DAT) which is responsible for the uptake of dopamine within the central nervous system. The objective of these studies was to study the role of DAT in dopamine transport across the bovine olfactory and nasal respiratory mucosa. Western blotting studies demonstrated the expression of DAT and immunohistochemistry revealed its epithelial and submucosal localization within the nasal mucosa. Bidirectional transport studies over a 0.1-1 mM dopamine concentration range were carried out in the mucosal-submucosal and submucosal-mucosal directions to quantify DAT activity, and additional transport studies investigating the ability of GBR 12909, a DAT inhibitor, to decrease dopamine transport were conducted. Dopamine transport in the mucosal-submucosal direction was saturable and was decreased in the presence of GBR 12909. These studies demonstrate the activity of DAT in the nasal mucosa and provide evidence that DAT-mediated dopamine uptake plays a role in the absorption and distribution of dopamine following intranasal administration.  相似文献   

8.
An involvement of the D(3) dopamine receptor in the regulation of extracellular dopamine has been suggested. However, the mechanisms mediating this effect are unclear. We have used the technique of no net flux microdialysis under transient conditions to examine the influence of the D(3) -preferring agonist (+)-PD128907 upon extracellular dopamine levels in the nucleus accumbens of the mouse. (+)-PD 128907 (0.1 mg/kg intraperitoneally) significantly decreased extracellular dopamine. This decrease was associated with a marked increase in the extraction fraction, which suggests an increase in dopamine clearance. The ability of D(3) -preferring compounds to modulate dopamine uptake was investigated in vitro using rotating disk electrode voltammetry. (+)-PD 128907 (10 nm) significantly increased the initial clearance rate of 3 microm dopamine in rat nucleus accumbens tissue suspensions. Kinetic analysis revealed no change in the apparent K (m) of uptake but it showed a 33% increase in V (max). In contrast, the D(3) antagonist GR 103691 (10 nm) significantly decreased dopamine uptake. Consistent with the low levels of D(3) receptors in the dorsal striatum, neither compound affected uptake in tissue suspensions from this brain region. These data indicate that D(3) receptor activation increases dopamine uptake in the nucleus accumbens and suggest that this receptor subtype can regulate extracellular dopamine by modulating the DA transporter activity.  相似文献   

9.
Estrogen induces lordosis through, in part, estrogen receptor (ER)-mediated synthesis of progesterone receptors (PR) in the ventromedial nucleus (VMN). In vitro, PR is activated by the neurotransmitter dopamine through D1-like receptors (1). In vivo, lordosis is induced by dopamine, an effect mediated in part by PR and D(5) dopamine receptors. The purpose of the present study was to determine mRNA distribution of D1-like receptors in the female rat brain using RT-PCR combined with punchout microdissection techniques. Employing specific primers to D(5) and D(1) dopamine receptors, we found detectable expression levels of D(5) dopamine receptor mRNA in VMN as well as the arcuate nucleus/median eminence (ArcN/ME). In contrast, D(1) dopamine receptor mRNA was detected only in VMN. By using this highly sensitive and specific RT-PCR methodology, we have confirmed the presence of D(5) dopamine receptor mRNA in an area of the brain that regulates reproductive behavior through PR. The data support the previous observation that D(5) dopamine receptors in VMN contribute to facilitation of female reproductive behavior by D1-like agonists.  相似文献   

10.
The axoplasmic transport of aromatic l -amino acid decarboxylase and dopamine β-hydroxylase, two enzymes involved in the biosynthesis of catecholamines, was studied in rat sciatic nerve. The two enzymes exhibited markedly different axoplasmic flow characteristics, since dopamine β-hydroxylase activity accumulated on the proximal side of a ligation nearly three times as fast as aromatic l -amino acid decarboxylase activity. Distally dopamine β-hydroxylase activity remained essentially constant for 24 h, whereas aromatic l -amino acid decarboxylase activity fell precipitously. Evidence was obtained to rule out the possibility that differences in the rate of inactivation of the two enzymes could account for the different rates of accumulations observed. The conclusion, that aromatic L-amino acid decarboxylase and dopamine β-hydroxylase are transported in sympathetic nerve at different rates is discussed in relation to the biosynthesis of norepinephrine.  相似文献   

11.
The release of neurotransmitters is known to be regulated by activation of heterotrimeric G protein-coupled receptors, although precise mechanisms have not yet been elucidated. To assess the role of the G(12) family of heterotrimeric G proteins in the regulation of neurotransmitter release, we established PC12 cell lines that expressed constitutively active Galpha(12) or Galpha(13) using an isopropyl-beta-D-thiogalactoside-inducible expression system. In the cells, expression of constitutively active Galpha(12) or Galpha(13) inhibited the high K(+)-evoked [(3)H]dopamine release without any effect on the high K(+)-induced increase in intracellular Ca(2+) concentration. A Ca(2+) ionophore ionomycin-induced [(3)H]dopamine release was also inhibited by the expression of active Galpha(12) or Galpha(13). These inhibitory effects of Galpha(12) and Galpha(13) on [(3)H]dopamine release were mimicked by the expression of constitutively active RhoA. In addition, Y-27632, and inhibitor of Rho-associated kinase, a downstream Rho effector, completely abolished the inhibition of [(3)H]dopamine release by Galpha(12), Galpha(13), and RhoA. These results indicate that Ca(2+)-dependent exocytosis is regulated by Galpha(12) and Galpha(13) through a Rho/Rho-associated kinase-dependent pathway.  相似文献   

12.
A microiontophoretic study was performed to investigate the effects of a newly synthesized quinolinone derivative, 7-[3-(4-(2,3-dimethylphenyl) piperazinyl) propoxy] 2-(1H)-quinolinone (OPC-4392), on neuronal activities of the ventral tegmental area (VTA) of rats anesthetized with chloral hydrate. The VTA neurons, which were identified by antidromic stimulation of the nucleus accumbens (Acc), were classified into type I and type II neurons according to the responses to Acc stimulation: type I neurons had a long spike latency of over 7 msec (9.63 +/- 0.25 msec), and the type II, a short latency of less than 7 msec (2.98 +/- 0.27 msec) upon Acc stimulation. In all of 11 type I neurons, iontophoretically applied OPC-4392 and dopamine inhibited the antidromic spikes elicited by Acc stimulation. This inhibition was antagonized by simultaneous application of domperidone (dopamine D-2 antagonist). However, in 16 out of 19 type II neurons the antidromic spikes were not affected by either OPC-4392 or dopamine. When the effects of iontophoretically applied OPC-4392 and dopamine on spontaneous firings were tested in 32 VTA neurons identified by Acc stimulation (including type I and type II neurons), there was a relationship between the effects of these two drugs. These results suggest that OPC-4392 acts on dopamine D-2 receptors of the dopaminergic neurons in the VTA, thereby inhibiting neuronal activity.  相似文献   

13.
A new fluorescent reagent, 1,5-bis(4,6-dichloro-1,3,5-triazinylamino)naphthalene, containing two active chlorines, was synthesized by a one-step reaction. Under the optimum conditions for the determination of dopamine, the enhanced fluorescence intensity is proportional to the dopamine concentration. The fluorescence intensity was measured at lambda(ex/em) = 400/460 nm, with and without dopamine. The linear range and detection limit for the determination of dopamine were 1.0 x 10(-7) mol/L-5.0 x 10(-5) mol/L and 4.0 x 10(-8) mol/L. This method is simple, practical, can afford good precision and accuracy and can be successfully applied to assess dopamine in injections and human serum samples.  相似文献   

14.
The effect of dopamine on the salivary gland acinar cells of the locust was examined using conventional intracellular recording techniques. Application of dopamine induced a reversible, dose-dependent hyperpolarization of the acinar cells, with an EC(50) of 0.1 &mgr;M dopamine. We investigated the pharmacology of the dopamine receptor mediating hyperpolarization of the acinar cells using a range of dopaminergic agonists and antagonists. The effect of dopamine could be mimicked by the selective D(1) receptor agonist SKF82958, whilst the D(2) receptor agonists PPHT-HCl and TNPA-HBr were far less potent at inducing hyperpolarization. The receptor also showed selectivity to certain synthetic D(1)-like agonists. SKF82958 was much more effective at inducing a hyperpolarization than SKF81297. The dopamine-induced hyperpolarization of locust acinar cells could be blocked using the selective D(1) receptor antagonist SCH23390 whilst the D(2) receptor antagonists sulpiride and spiperone were inactive. The rank order of potency of several dopaminergic agonists and antagonists was obtained and suggests that the dopamine receptor mediating the hyperpolarization in locust salivary gland acinar cells is similar to a mammalian D(1) receptor. Stimulation of the salivary nerve mimicked the effect of dopamine on the acinar cells, inducing a rapid reversible hyperpolarization. This neurally-evoked hyperpolarization of the locust acinar cells was suppressed using 1.0 &mgr;M SCH23390, whilst 10 &mgr;M sulpiride was inactive. This demonstrated that both exogenously applied dopamine and endogenously released dopamine are probably acting on the same receptor.  相似文献   

15.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

16.
A novel luminescence, enhancement phenomenon in the europium(III)–dopamine–sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co‐luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)–lanthanum(III)–dopamine–sodium dodecylbenzene sulfonate system was monitored at λex = 300 nm, λem =618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10–10–5.0 × 10–7 mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10–11 mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10–8 mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Our aim was to investigate whether a defect in vesicular monoamine transporter-2 (VMAT2) activities would affect dopaminergic cell functions or not. We examined mesencephalon dopaminergic cultures prepared from VMAT2 wild-type, heterozygous or homozygous knockout (KO) 14-day-old mouse fetuses to determine the number of tyrosine hydroxylase (TH)-positive cells and dopamine transporter activity. The number of TH-positive cells remained unchanged in the VMAT2-KO cultures. Of interest, the dopamine transporter activity in the homozygous cells was significantly decreased, but not in the heterozygous cells, suggesting that complete deletion of VMAT2 inhibited dopamine transporter function. Furthermore, dopamine transporter activity was prominently decreased in the synaptosomal fraction of neonatal homozygous VMAT2-KO mice compared with that of wild-type/heterozygous VMAT2-KO ones, indicating that VMAT2 activity might be one of the factors regulating dopamine transporter activities. To test this possibility, we used reserpine, a VMAT2 inhibitor. Reserpine (1muM) decreased dopamine transporter activity (approx. 50%) in wild-type and heterozygous VMAT2-KO cultures but not in homozygous ones, indicating that blockade of VMAT2 activity reduced dopamine transporter activity. To investigate possible mechanisms underlying the decreased dopamine transporter activity in VMAT2-KO mice, we measured dopamine transporter activities after 24-48h exposure of primary cultures of mesencephalic neurons to dopamine receptor antagonists, PKC inhibitor, PI(3)K inhibitor, and l-DOPA. Among these drugs, l-DOPA slightly reduced the dopamine transporter activities of all genotypes, but the other drugs could not. Since the ratios of reduction in dopamine transporter activity of each genotype treated with l-DOPA were similar, substrate inhibition of dopamine transporters was not the main mechanism underlying the reduced dopamine transporter activity due to genetic deletion of VMAT2. Our results demonstrate that genetic deletion of VMAT2 did not induce immediate cell death but did markedly inhibit dopamine transporter activity.  相似文献   

18.
7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), was synthesized in our laboratories and compared with apomorphine, 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP) and dopamine antagonists in a series of tests designed to characterize dopamine receptor activation and inhibition. The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. Haloperidol antagonized the inhibitory effect of OPC-4392 in both instances. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit 14C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices. In addition, OPC-4392 appears to block postsynaptic D2 receptors since OPC-4392, as well as dopamine antagonists, was able to inhibit stereotyped behavior and climbing behavior induced by apomorphine in mice, displace the 3H-spiroperidol binding to rat synaptosomal membranes in vitro and reverse the inhibitory effect of apomorphine on Ach release in rat striatal slices. These results suggest that OPC-4392 acts as a dopamine agonist at presynaptic autoreceptors related to dopamine synthesis and acts as dopamine antagonist at postsynaptic D2 receptors.  相似文献   

19.
Autoimmune hemolytic anemia (AIHA) is a disorder associated with the destruction of red blood cells (RBCs) by autoantibodies. We report a rare case of AIHA in an infant rhesus macaque (Macaca mulatta) which received a continuous administration of four drugs, a dopamine agonist. dopamine receptor inhibitor, and two gamma-aminobutyric acid receptor inhibitors into the brain during the course of neurophysiological experiments. The main clinical findings were severe anemia and splenomegaly. Hematological and serological examinations revealed the appearance of peripheral erythroblasts and autoantibodies against RBCs. Medical treatments, including washed RBC transfusion and corticosteroids, transiently improved the animal's anemia, but euthanasia was decided on 331 days after the start of the experiment. The pathological findings revealed severe anemia, splenomegaly, and extramedullary hematopoiesis in the liver and kidneys. These findings and the clinical course suggest that this anemia was a warm-antibody type of AIHA induced by the administration of the drugs for the neurophysiological experiment.  相似文献   

20.
Abstract— Chick embryo sympathetic chains were grown in tissue culture and pulse labelled with tritiated catecholamines. The uptake was restricted to sympathetic nerve cells. The capability of these cells to take up radioactive dopamine and norepinephrine from the culture media was retained after one month in tissue culture. The uptakes of both [3H]norepinephrine and [3H]dopamine were inhibited when nonradioactive DOPA, dopamine, norepinephrine or epinephrine were present in the pulse media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号