首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Antiviral activity of pancreatic RNase and RNase from Act.rimosus modified by various dextran derivatives was studied with respect to aphthosa and Ayzeku disease viruses. Antiviral activity of pancreatic RNase modified by dextran m-aminobenzylhydroxymethyl ether was lower than biological activity of RNase from Act.rimosus modified by the same dextran. Antiviral activity of pancreatic enzyme modified by dialdehyde dextran also changed insignificantly. Modification by dextran hydroxyethylsulfonylanisole ether, dextran m-aminobenzylhydroxymethyl ether in the presence of pyridine or dextran sulfate resulted in a more pronounced increase in antiviral activity of pancreatic enzyme. Therefore, biological activity of the modified nucleases depended on the nature of the enzyme and dextran modifying it.  相似文献   

2.
Eosinophil-derived neurotoxin (EDN) and human liver RNase were found to be indistinguishable from each other but distinct from the pancreatic ribonucleases in their nucleolytic activity on polynucleotides or small defined substrates. Antibodies to EDN and liver RNase showed identical cross-reactivities in assays of nuclease inhibition and in a radioimmunoassay. In each instance, EDN and liver RNase were easily distinguished from bovine or human pancreatic RNase. When injected intrathecally into rabbits, 5-10 micrograms of EDN or liver RNase each was neurotoxic as judged by induction of the Gordon phenomenon. Human pancreatic RNase was less neurotoxic, and up to 20-fold higher levels of bovine pancreatic RNase showed no effect. Treatment of EDN, liver RNase, and eosinophil cationic protein with iodoacetic acid at pH 5.5 resulted in inactivation of their RNase activity and also destroyed their neurotoxicity. EDN conformation was not greatly affected by iodoacetate treatment since interaction of the modified protein with antibodies was only slightly altered. We conclude that RNase activity is necessary but not sufficient to induce neurotoxic action.  相似文献   

3.
Polyspermine-ribonuclease A (PS-RNase A) and polyspermine-dimeric ribonuclease A (PS-dimeric RNase A) were prepared by cross-linking ribonuclease A or its covalently linked dimer to polyspermine (PS) using dimethyl suberimidate. The two RNase A derivatives were tested for a possible antitumor action. The in vitro and in vivo cytotoxic activity of PS-RNase A, although strong, is not higher than that known for free polyspermine. PS-dimeric RNase A, which was characterized by mass spectroscopy, titration of free amine groups, and enzymatic assays, proved instead to be a definitely more efficient antitumor agent, both in vitro and in vivo. This result could tentatively be explained in view of the importance of positive charges for ribonuclease activity, considering the higher basicity of PS-dimeric RNase A compared to that of PS-(monomeric)RNase A. It must be also taken into account that the dimeric RNase A moiety of PS-dimeric RNase A could evade the cytoplasmic ribonuclease inhibitor, which instead could trap the monomeric RNase A moiety of the other derivative. The two RNase A derivatives degrade poly(A).poly(U) under conditions where native RNase A is inactive. The results of this work demonstrate once again the importance of positive charges for the functions of mammalian pancreatic type ribonucleases in general, in particular for RNase A derivatives, and the potential therapeutic use of the ribonuclease A derivatives.  相似文献   

4.
J Futami  T Maeda  M Kitazoe  E Nukui  H Tada  M Seno  M Kosaka  H Yamada 《Biochemistry》2001,40(25):7518-7524
Carboxyl groups of bovine RNase A were amidated with ethylenediamine (to convert negative charges of carboxylate anions to positive ones), 2-aminoethanol (to eliminate negative charges), and taurine (to keep negative charges), respectively, by a carbodiimide reaction. Human RNase 1 was also modified with ethylenediamine. Surprisingly, the modified RNases were all cytotoxic toward 3T3-SV-40 cells despite their decreased ribonucleolytic activity. However, their enzymatic activity was not completely eliminated by the presence of excess cytosolic RNase inhibitor (RI). As for native RNase A and RNase 1 which were not cytotoxic, they were completely inactivated by RI. More interestingly, within the cytotoxic RNase derivatives, cytotoxicity correlated well with the net positive charge. RNase 1 and RNase A modified with ethylenediamine were more cytotoxic than naturally occurring cytotoxic bovine seminal RNase. An experiment using the fluorescence-labeled RNase derivatives indicated that the more cationic RNases were more efficiently adsorbed to the cells. Thus, it is suggested that the modification of carboxyl groups could change complementarity of RNase to RI and as a result endow RNase cytotoxicity and that cationization enhances the efficiency of cellular uptake of RNase so as to strengthen its cytotoxicity. The finding that an extracellular human enzyme such as RNase 1 could be effectively internalized into the cell by cationization suggests that cationization is a simple strategy for efficient delivery of a protein into cells and may open the way of the development of new therapeutics.  相似文献   

5.
A chemical derivative of bovine pancreatic ribonuclease A (RNase A) has been prepared by reaction with fluorescein-isothiocyanate at pH 6. This derivative has a fluorescein group covalently attached to the alpha-amino group of the protein. The enzymic properties of the modified protein are similar to those of RNase A. It is shown that the pK of the fluorescein group can be used as an index of protein conformation to monitor structural changes in the protein. In this work, the binding of a specific inhibitor (cytidine 2'-monophosphate) to RNase A, the isomerization process occurring in RNase A around pH 6, and the thermal unfolding of RNase A, were studied by mean of the pK changes of the fluorescein group. The results obtained by this method are fully consistent with those obtained by other methods. It is proposed that using ionizable reporter groups and their changes in pK to monitor conformational changes in proteins may be a sensitive tool both in equilibrium and kinetic studies.  相似文献   

6.
Due to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor (RI). Consequently, the development of RNase derivatives with the ability to evade RI binding is a desirable goal. In this study, tandem enzymes consisting of two RNase A units that are bound covalently via a peptide linker were generated by gene duplication. As deduced from the crystal structure of the RNase A.RI complex, one RNase A unit of the tandem enzyme can still be bound by RI. The other unit, however, should remain unbound because of steric hindrance. This free RNase A unit is expected to maintain its activity and to act as a cytotoxic agent. The study of the influence of the linker sequence on the conformation and stability of these constructs revealed that tandemization has only minor effects on the activity and stability of the constructs in comparison to monomeric RNase A. Relative activity was decreased by 10-50% and the melting temperature was decreased by less than 2.5 K. Furthermore, the cytotoxic potency of the RNase A tandem enzymes was investigated. Despite an in vitro inhibition by RI, tandemization was found to endow RNase A with remarkable cytotoxic activity. While monomeric RNase A is not cytotoxic, IC(50) values of the RNase A tandem variants decreased to 70.3-12.9 microM. These findings might establish the development of a new class of chemotherapeutic agents based on pancreatic ribonucleases.  相似文献   

7.
Dimers of bovine pancreatic RNase A give nonhyperbolic saturation curves for the substrate of the second, rate-limiting step of the reaction. Under the same conditions, the monomeric native enzyme shows Michaelis-Menten kinetics. Naturally dimeric bovine seminal RNase, which has been found to give nonhyperbolic saturation curves, loses this property upon monomerization. It is proposed that when RNase monomers are arranged in a quaternary structure, they assume a conformation which enables them to be modulated in their catalytic activities. A correlation is suggested between this effect and the quaternary structure proposed for both of these dimeric ribonucleases, in which composite active sites are generated by the mutual exchange of the NH2-terminal ends of the two monomers.  相似文献   

8.
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of ‘humanized antitumor ribonuclease’ that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.  相似文献   

9.
10.
The major secretory ribonuclease (RNase) of human urine (RNase HUA) was isolated and sequenced by automatic Edman degradation and analysis of peptides and glycopeptides. The isolated enzyme was shown to be free of other urine RNase activities by SDS/polyacrylamide-gel electrophoresis and activity staining. It is a glycoprotein 128 amino acids long, differing from human pancreatic RNase in the presence of an additional threonine residue at the C-terminus. It differs from the pancreatic enzyme in its glycosylation pattern as well, and contains about 45 sugar residues. Each of the three Asn-Xaa-Ser/Thr sequences (Asn-34, Asn-76, Asn-88) is glycosylated with a complex-type oligosaccharide chain. Glycosylation at Asn-88 has not been observed previously in mammalian secretory RNases. Preliminary sequence data on the major RNase of human seminal plasma have revealed no difference between it and the major urinary enzyme; their similarities include the presence of threonine at the C-terminus. The glycosylation pattern of human seminal RNase is very similar to that of the pancreatic enzyme. The structural differences between the secretory RNases from human pancreas, urine and seminal plasma must originate from organ-specific post-translational modifications of the one primary gene product. Detailed characterization of peptides and the results of gel filtration of tryptic and tryptic/chymotryptic digests of performic acid-oxidized RNase have been deposited as Supplementary Publication SUP 50146 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1988) 249, 5.  相似文献   

11.
The three-dimensional structure of rat pancreatic RNase A expressed in Escherichia coli was determined. The backbone conformations of certain critical loops are significantly different in this enzyme compared to its bovine counterpart. However, the core structure of rat RNase A is similar to that of the other members of the pancreatic ribonuclease family. The structural variations within a loop bordering the active site can be correlated with the subtle differences in the enzymatic activities of bovine and rat ribonucleases for different substrates. The most significant difference in the backbone conformation was observed in the loop 15-25. This loop incorporates the subtilisin cleavage site which is responsible for RNase A to RNase S conversion in the bovine enzyme. The rat enzyme does not get cleaved under identical conditions. Molecular docking of this region of the rat enzyme in the active site of subtilisin shows steric incompatibility, although the bovine pancreatic ribonuclease A appropriately fits into this active site. It is therefore inferred that the local conformation of the substrate governs the specificity of subtilisin.  相似文献   

12.
Antibodies against pure human pancreatic ribonuclease (RNase) were used to study ribonuclease levels in human tissues and body fluids. The antibodies completely inhibit the activity of purified RNase as well as ribonuclease activity in crude pancreatic extracts. RNase activity is inhibited by 70-80% in serum and urine, indicating that a significant proportion of the RNases in these preparations are structurally like the pancreatic enzyme. In contrast, inhibition of RNase activities from spleen (8%) and liver (30%) was inefficient suggesting that most of the RNases in these tissues are structurally unlike the pancreatic enzyme. A competitive binding radioimmunoassay (RIA), sensitive in the range of 1-100 ng of RNase, was developed to quantitate the pancreatic like enzymes. The RIA of crude tissue preparations and samples fractionated by gel filtration was compatible with inhibition results. Enzymes structurally like pancreatic RNase could be quantitated despite the presence of other RNase activities. Immunological quantitation of pancreatic like RNases was also found to be much more simple and precise than enzymatic assays comparing RNA and polycytidylate substrates. We suggest the immunological assays will be useful in the quantitation and definition of tissue of origin of RNases in serum of patients with pancreatic carcinoma.  相似文献   

13.
The isolation and characterization of the initial intermediates formed during the irreversible acid denaturation of enzyme Ribonuclease A are described. The products obtained when RNase A is maintained in 0.5 M HCl at 30 degrees for periods up to 20 h have been analyzed by ion-exchange chromatography on Amberlite XE-64. Four distinct components were found to elute earlier to RNase A; these have been designated RNase Aa2, Aa1c, Aa1b, and Aa1a in order of their elution. With the exception of RNase Aa2, the other components are nearly as active as RNase A. Polyacrylamide gel electrophoresis at near-neutral pH indicated that RNase Aa1a, Aa1b, and Aa1c are monodeamidated derivatives of RNase A; RNase Aa1c contains, in addition, a small amount of a dideamidated component. RNase Aa2, which has 75% enzymic activity as compared to RNase A, consists of dideamidated and higher deamidated derivatives of RNase A. Except for differences in the proteolytic susceptibilities at an elevated temperature or acidic pH, the monodeamidated derivatives were found to have very nearly the same enzymic activity and the compact folded structure as the native enzyme. Fingerprint analyses of the tryptic peptides of monodeamidated derivatives have shown that the deamidations are restricted to an amide cluster in the region 67-74 of the polypeptide chain. The initial acid-catalyzed deamidation occurs in and around the 65-72 disulfide loop giving rise to at least three distinct monodeamidated derivatives of RNase A without an appreciable change in the catalytic activity and conformation of the ribonuclease molecule. Significance of this specific deamidation occurring in highly acidic conditions, and the biological implications of the physiological deamidation reactions of proteins are discussed.  相似文献   

14.
Bovine pancreatic ribonuclease A (RNase) contains two bonds, Met29-Met30 and Tyr92-Pro93 which are representative of sites in the human immunodeficiency virus-1 (HIV-1) gag polyprotein precursors that are cleaved by the HIV-1 protease during viral maturation. Nevertheless, neither native nor performic acid-oxidized RNase is a substrate for the protease. However, RNase derivatives obtained by reduction and S-alkylation with iodoacetate or iodoacetamide undergo cleavage by the HIV-1 protease at a single site, Ala109-alkyl-Cys110, that is distinct from either of the two predicted bonds mentioned above. The neutral carboxyamido-methylcysteinyl derivative is cleaved 8 times faster than that containing the negatively charged carboxy-methyl substituent at P1'. Succinylation of these S-alkylated RNase derivatives creates a second site of cleavage by the protease between succinyl-Lys7 and Phe8. Thus, the pattern of cleavage of denatured RNase by the HIV-1 protease can be manipulated by chemical derivatization of the substrate, and the new sites of hydrolysis revealed by these studies add to our understanding of the specificity of this important enzyme.  相似文献   

15.
The activities of three N-acetylglucosaminyltransferases ( GnT III, GnT IV and GnT V ) were determined in 10 samples of pancreatic carcinoma (PCa) and compared with those in 9 samples of normal pancreatic tissue (NP). It was found that the specific activities of GnT III , GnT IV and GnT V increased in all of the PCa samples. GnT III increased most significantly, up to 22.3 fold of normal, GnT IV was elevated 12.3 fold, while GnT V increased only 2.4 fold. The elevation of GnTs in pancreatic carcinoma was consistent with the increase in the number of antenna and bisecting GlcNAc structures in N-glycans of pancreatic ribonuclease (RNase) as assessed by Con A affinity chromatography. Polycytidylate specific RNase from the serum of PCa patients showed the same structural changes as that found in in N-glycans of the RNase from PCa tissue.  相似文献   

16.
The most potent low molecular weight inhibitors of pancreatic RNase superfamily enzymes reported to date are synthetic derivatives of adenosine 5(')-pyrophosphate. Here we have investigated the effects of six natural nucleotides that also incorporate this moiety (NADP(+), NADPH, ATP, Ap(3)A, Ap(4)A, and Ap(5)A) on the activities of RNase A and two of its homologues, eosinophil-derived neurotoxin and angiogenin. With eosinophil-derived neurotoxin and angiogenin, Ap(5)A is comparable to the tightest binding inhibitors identified previously (K(i) values at pH 5.9 are 370 nM and 100 microM, respectively); it ranks among the strongest small antagonists of RNase A as well (K(i)=230 nM). The K(i) for NADPH with angiogenin is similar to that of Ap(5)A. These findings suggest that Ap(5)A and NADPH may serve as useful new leads for inhibitor design. Examination of inhibition under physiological conditions indicates that NADPH, ATP, and Ap(5)A may suppress intracellular RNase activity significantly in vivo.  相似文献   

17.
The difference spectra obtained upon the addition of nucleotides to bovine kidney RNase, which shows 40% sequence homology with bovine pancreatic RNase, are markedly different from those of bovine pancreatic RNase. As one of the factors which possibly contribute to this difference, we examined the effect of the substitution of Phe120 in bovine pancreatic RNase by Leu in RNase K2 on the difference spectra.  相似文献   

18.
J W Harper  E A Fox  R Shapiro  B L Vallee 《Biochemistry》1990,29(31):7297-7302
The primary structure of the blood vessel inducing protein angiogenin is 35% identical with that of pancreatic ribonuclease (RNase) and contains counterparts for the critical RNase active-site residues His-12, Lys-41, and His-119. Although angiogenin is a ribonucleolytic enzyme, its activity toward conventional substrates is lower than that of pancreatic RNase by several orders of magnitude. Comparison of the amino acid sequences of RNase and angiogenin reveals several striking differences in the region flanking the active-site lysine, including a deletion and a transposition of aspartic acid and proline residues. In order to examine how these sequence changes alter the functional properties of angiogenin, an angiogenin/RNase hybrid protein (ARH-II), in which residues 38-41 of angiogenin (Pro-Cys-Lys-Asp) have been replaced by the corresponding segment of bovine pancreatic RNase (Asp-Arg-Cys-Lys-Pro), was prepared by regional mutagenesis. Compared to angiogenin, ARH-II has markedly diminished angiogenic activity on the chick embryo chorioallantoic membrane but 5-75-fold greater enzymatic activity toward a variety of polynucleotide and dinucleotide substrates. In addition, the specificity of ARH-II toward dinucleotide substrates differs from that of angiogenin and is qualitatively similar to that of pancreatic RNase. Thus, non-active-site residues near Lys-40 in angiogenin appear to play a significant role in determining enzymatic specificity and reactivity as well as angiogenic potency. An additional angiogenin/RNase hybrid protein (ARH-IV), in which residues 59-71 of ARH-II have been replaced by the corresponding segment of pancreatic RNase, was also prepared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The interaction of pancreatic RNase with 5'-deoxyribodinucleotide alkylating derivative, 4-(N-2-chloroethyl-N-methylamino)benzylamide of d(pTpA) d[(ClRCH2NH)pTpA], was studied. The unreactive oxyanalogue d[(HORCH2NH)pTpA] was shown to act as competitive inhibitor of cCMP hydrolysis by RNase. d[(ClRCH2NH)pTpA] irreversibly inactivated RNase. A protective effect was exerted by d(pTpA) and d[(HORCH2NH)pTpA]. The modification, although having an affinity character, was not accompanied by total inactivation of the enzyme. It was supposed that covalent bonding between the reagent and enzyme induced the dinucleotide displacement from the recognition site. The formation of four RNase monolabeled forms retaining the activity in the hydrolysis of cCMP and poly(U) was demonstrated.  相似文献   

20.
The minor form of valine tRNA from baker's yeast-tRNAVal 2b--purified by column chromatography was completely digested with guanylo-RNase and pancreatic RNase. The products of these digestions were separated by a combination of thin-layer chromatography on cellulose and high voltage electrophoresis on DEAE-paper and then identified. The halves of tRNA Val 2b were prepared by partial digestion with pancreatic RNase, and their complete guanylo-RNase and pancreatic RNase digests were analysed. Basing on the obtained data the primary structure of baker's yeast tRNA Val 2b was reconstructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号