首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple-lentigines (ML)/LEOPARD (multiple lentigines, electrocardiographic-conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome is an autosomal dominant condition--characterized by lentigines and café au lait spots, facial anomalies, cardiac defects--that shares several clinical features with Noonan syndrome (NS). We screened nine patients with ML/LEOPARD syndrome (including a mother-daughter pair) and two children with NS who had multiple café au lait spots, for mutations in the NS gene, PTPN11, and found, in 10 of 11 patients, one of two new missense mutations, in exon 7 or exon 12. Both mutations affect the PTPN11 phosphotyrosine phosphatase domain, which is involved in <30% of the NS PTPN11 mutations. The study demonstrates that ML/LEOPARD syndrome and NS are allelic disorders. The detected mutations suggest that distinct molecular and pathogenetic mechanisms cause the peculiar cutaneous manifestations of the ML/LEOPARD-syndrome subtype of NS.  相似文献   

2.
CFC (cardiofaciocutaneous) syndrome (MIM 115150) has been considered by several authors to be a more severe expression of Noonan syndrome. Affected patients present with congenital heart defects, cutaneous abnormalities, Noonan-like facial features and severe psychomotor developmental delay. We have recently demonstrated that Noonan syndrome can be caused by missense mutations in PTPN11(MIM 176876), a gene that encodes the non-receptor protein tyrosine phosphatase SHP-2. In this report, we have evaluated the possible involvement of mutations in PTPN11 in CFC syndrome. A cohort of 28 CFC subjects rigorously assessed as having CFC based on OMIM diagnostic criteria was examined for mutations in the PTPN11 coding sequence by using DHPLC analysis. The results showed no abnormalities in the coding region of the PTPN11 gene in any CFC patient, nor any evidence of major deletions within the gene suggesting that mutations in other gene(s) are responsible for this syndrome.  相似文献   

3.
Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.  相似文献   

4.
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.  相似文献   

5.
Neurofibromatosis type 1 (NF1) demonstrates phenotypic overlap with Noonan syndrome (NS) in some patients, which results in the so-called neurofibromatosis-Noonan syndrome (NFNS). From a genetic point of view, NFNS is a poorly understood condition, and controversy remains as to whether it represents a variable manifestation of either NF1 or NS or is a distinct clinical entity. To answer this question, we screened a cohort with clinically well-characterized NFNS for mutations in the entire coding sequence of the NF1 and PTPN11 genes. Heterozygous NF1 defects were identified in 16 of the 17 unrelated subjects included in the study, which provides evidence that mutations in NF1 represent the major molecular event underlying this condition. Lesions included nonsense mutations, out-of-frame deletions, missense changes, small inframe deletions, and one large multiexon deletion. Remarkably, a high prevalence of inframe defects affecting exons 24 and 25, which encode a portion of the GAP-related domain of the protein, was observed. On the other hand, no defect in PTPN11 was observed, and no lesion affecting exons 11-27 of the NF1 gene was identified in 100 PTPN11 mutation-negative subjects with NS, which provides further evidence that NFNS and NS are genetically distinct disorders. These results support the view that NFNS represents a variant of NF1 and is caused by mutations of the NF1 gene, some of which have been demonstrated to cause classic NF1 in other individuals.  相似文献   

6.
Noonan syndrome is a well-known clinical entity comprising multiple congenital anomalies characterized by typical facial features, short stature and congenital heart defect. Approximately 50% of cases are sporadic. Familial cases are generally autosomal dominant. In 2001 a gene responsible for Noonan syndrome, PTPN11, encoding for the non-receptor protein tyrosine phosphatase SHP-2, was identified. Mutation analysis of the PTPN11 gene was carried out in Nijmegen in 150 patients with Noonan syndrome. Mutations were found in 68 patients (45%), the most common being A922G in exon 8. In exon 4 a mutation was found that encoded the C-SH2 domain of the PTPN11 gene in two unique patients who shared some uncommon features. A 218C-->T mutation was found in exon 3 in one patient with Noonan syndrome and mild juvenile myelomonocytic leukaemia.  相似文献   

7.
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.  相似文献   

8.
Mutations in PTPN11 gene was responsible for ~50% of the Noonan syndrome (NS), however, we did not find any mutation in PTPN11 in any of seven NS patients analysed. Whereas, the complete mtDNA sequencing revealed 146 mutations, of which five, including one heteroplasmic (A11144R; Thr  Ala) non-synonymous mutation, were novel and exclusively observed in NS patients. Interestingly all the seven probands and their maternal relatives were clustered under a major haplogroup R and its novel sub-haplogroups (R7b1b, R30a1, R30c, T2b7, U9a1) exclusive in NS, therefore we strongly suggest that these haplogroups may influence NS in South Indian populations.  相似文献   

9.
Noonan syndrome (NS) is an autosomal dominant disorder caused by activating mutations in the PTPN11 gene encoding Shp2, which manifests in congenital heart disease, short stature, and facial dysmorphia. The complexity of Shp2 signaling is exemplified by the observation that LEOPARD syndrome (LS) patients possess inactivating PTPN11 mutations yet exhibit similar symptoms to NS. Here, we identify “protein zero-related” (PZR), a transmembrane glycoprotein that interfaces with the extracellular matrix to promote cell migration, as a major hyper-tyrosyl-phosphorylated protein in mouse and zebrafish models of NS and LS. PZR hyper-tyrosyl phosphorylation is facilitated in a phosphatase-independent manner by enhanced Src recruitment to NS and LS Shp2. In zebrafish, PZR overexpression recapitulated NS and LS phenotypes. PZR was required for zebrafish gastrulation in a manner dependent upon PZR tyrosyl phosphorylation. Hence, we identify PZR as an NS and LS target. Enhanced PZR-mediated membrane recruitment of Shp2 serves as a common mechanism to direct overlapping pathophysiological characteristics of these PTPN11 mutations.  相似文献   

10.
Tyrosyl phosphorylation participates in various pathological and physiological processes, which are regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). The Src homology- 2 domain containing phosphatase SHP2 (encoded by PTPN11) is an important phosphatase, which was found to be implicated in the regulation of genetic disease, development, metabolic, neurological, muscle, skeletal disease and cancer. Germline mutations in PTPN11 cause the Noonan Syndrome, LEOPARD syndrome and metachondromatosis. Somatic PTPN11 mutations occur in hematologic malignancies and in solid tumors. SHP2 is also an important component in oncogenic signaling pathways. It may play different roles in different stages and positions of human cancers. Whether SHP2 is an oncogene or cancer suppressor gene remains to be elucidated. Elucidation of the regulatory mechanisms of SHP2 in human disease will provide new insights into disease and new targets for therapy. Here, we summarized the structural basis and recent research progression on SHP2 in various human disease, including genetic and cancer diseases.  相似文献   

11.
BACKGROUND: Noonan syndrome NS (OMIM 163950) is an autosomal dominant developmental disorder characterized mainly by typical facial dysmorphism, growth retardation and variable congenital heart defects. In unrelated individuals with sporadic or familial NS, heterozygous missense point mutations in the gene PTPN11 (OMIM 176876) have been confirmed, with a clustering of mutations in exons 3 and 8, the mutation A922G Asn308Asp accounting for nearly 25% of cases. PATIENT AND METHODS: We report a 7-year-old boy with short stature and some other clinical features of NS, who has been investigated by molecular analysis for the presence of mutations in the PTPN11 gene. Result: The de novo mutation A172G in the exon 3 of the PTPN11 gene, predicting an Asn58Asp substitution, has been found. To the best of our knowledge, this specific mutation has only been described once before, but this is the first report of detailed clinical data suggesting a mild phenotype. CONCLUSION: Detailed clinical phenotype in every patient with major or minor features of NS and molecular identification of PTPN11 gene mutation may contribute to a better phenotype-genotype correlation.  相似文献   

12.
Multiple lentigines/LEOPARD syndrome (LS) is a rare, autosomal dominant disorder characterized by Lentigines, Electrocardiogram abnormalities, Ocular hypertelorism, Pulmonic valvular stenosis, Abnormalities of genitalia, Retardation of growth, and Deafness. Like the more common Noonan syndrome (NS), LS is caused by germ line missense mutations in PTPN11, encoding the protein-tyrosine phosphatase Shp2. Enzymologic, structural, cell biological, and mouse genetic studies indicate that NS is caused by gain-of-function PTPN11 mutations. Because NS and LS share several features, LS has been viewed as an NS variant. We examined a panel of LS mutants, including the two most common alleles. Surprisingly, we found that in marked contrast to NS, LS mutants are catalytically defective and act as dominant negative mutations that interfere with growth factor/Erk-mitogen-activated protein kinase-mediated signaling. Molecular modeling and biochemical studies suggest that LS mutations contort the Shp2 catalytic domain and result in open, inactive forms of Shp2. Our results establish that the pathogenesis of LS and NS is distinct and suggest that these disorders should be distinguished by mutational analysis rather than clinical presentation.  相似文献   

13.
Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown-induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.  相似文献   

14.
Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown–induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.  相似文献   

15.
Noonan syndrome (NS) is a phenotypically heterogeneous syndrome which is frequently associated with short stature. Recent genetic investigations have identified mutations in five genes, namely PTPN11, KRAS, SOS1, NF1 and RAF1 in patients with the NS phenotype. PTPN11 is the commonest, being present in approximately 50% of cases. The degree of short stature in children does not associate closely with the presence of mutations, however some PTPN11-positive patients have decreased GH-dependent growth factors consistent with mild GH insensitivity. GH therapy, using doses similar to those approved for Turner syndrome (TS), induced short-term increases in height velocity over 1-3 years, and may improve final adult height with longer-term treatment.  相似文献   

16.

Background

Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES).

Methods

TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members.

Results

TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS).

Conclusions

TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.
  相似文献   

17.
The BRAF gene encodes for a serine/threonine protein kinase that participates in the MAPK/ERK signalling pathway and plays a vital role in cancers and developmental syndromes (RASopathies). The current review discusses the clinical significance of the BRAF gene and other members of RAS/RAF cascade in human cancers and RAS/MAPK syndromes, and focuses the molecular basis and clinical genetics of BRAF to better understand its parallel involvement in both tumourigenesis and RAS/MAPK syndromes—Noonan syndrome, cardio-facio-cutaneous syndrome and LEOPARD syndrome.  相似文献   

18.
Germline mutations in PTPN11--the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2--represent a major cause of Noonan syndrome (NS), a developmental disorder characterized by short stature and facial dysmorphism, as well as skeletal, hematologic, and congenital heart defects. Like many autosomal dominant disorders, a significant percentage of NS cases appear to arise from de novo mutations. Here, we investigated the parental origin of de novo PTPN11 lesions and explored the effect of paternal age in NS. By analyzing intronic portions that flank the exonic PTPN11 lesions in 49 sporadic NS cases, we traced the parental origin of mutations in 14 families. Our results showed that all mutations were inherited from the father, despite the fact that no substitution affected a CpG dinucleotide. We also report that advanced paternal age was observed among cohorts of sporadic NS cases with and without PTPN11 mutations and that a significant sex-ratio bias favoring transmission to males was present in subjects with sporadic NS caused by PTPN11 mutations, as well as in families inheriting the disorder.  相似文献   

19.
Birt-Hogg-Dubé syndrome (BHD), a genodermatosis characterized by multiple hamartomas of the hair follicle (fibrofolliculoma), predisposes individuals to an increased risk of developing renal neoplasms and spontaneous pneumothorax. Previously, we localized the BHD locus (also known as FLCN) to chromosome 17p11.2 by linkage analysis and subsequently identified germline mutations in a novel gene in probands from eight of the nine families with BHD in our screening panel. Affected members of five of the families inherited an insertion/deletion of a cytosine in a C8 tract in exon 11. This mutation was also identified by exon 11 screening in probands from 22 of 52 additional families with BHD and therefore represents a hypermutable "hotspot" for mutation in BHD. Here, we screened the remaining 30 families from this large BHD cohort by direct sequence analysis and identified germline BHD mutations in 84% (51/61) of all families with BHD recruited to our study. Mutations were located along the entire length of the coding region, including 16 insertion/deletion, 3 nonsense, and 3 splice-site mutations. The majority of BHD mutations were predicted to truncate the BHD protein, folliculin. Among patients with a mutation in the exon 11 hotspot, significantly fewer renal tumors were observed in patients with the C-deletion than those with the C-insertion mutation. Coding-sequence mutations were not found, however, in probands from two large families with BHD whose affected members shared their family's BHD-affected haplotype. Of the 53 families with BHD whose members inherited either a germline mutation or the affected haplotype, 24 (45%) had at least one member with renal neoplasms. Three families classified with familial renal oncocytoma were identified with BHD mutations, which represents the first disease gene associated with this rare form of renal neoplasm. This study expands the BHD-mutation spectrum and evaluates genotype-phenotype correlations among families with BHD.  相似文献   

20.
L. Dard  N. Bellance  D. Lacombe  R. Rossignol 《BBA》2018,1859(9):845-867
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation–arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号