首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to investigate the ability of Acidovorax avenae ssp. citrulli, the causal agent of bacterial fruit blotch of cucurbits (BFB), to colonize female watermelon blossoms, and to explore the relationship between blossom inoculum dosage and seed infestation. Under greenhouse conditions A. avenae ssp. citrulli colonized stigmas and styles of female watermelon blossoms reaching populations of ≈107 to 108 colony‐forming units (CFU) per blossom for 96 h after inoculation. Acidovorax avenae ssp. citrulli growth on stigmas was slower than that of Pseudomonas syringae Cit7, a non‐pathogenic, foliar epiphyte of tomato. While pollination reduced growth of A. avenae ssp. citrulli, but P. syringae Cit7 was unaffected. Both bacteria colonized style tissues but bacterial growth in the style was significantly less than the stigma. Blossom inoculation with ≈1 × 103A. avenae ssp. citrulli CFU/blossom led to 36–55% infested seedlots within symptomless fruits. On average 14% of the seedlings produced from these seedlots displayed BFB symptoms. There was a strong positive correlation between A. avenae ssp. citrulli inoculum concentration applied to blossoms and the percentage of infested seedlots, as determined by the seedling grow‐out assay (R2 = 0.94). However, this relationship was weaker when seedlot infestation was determined by a polymerase chain reaction‐based assay (R2 = 0.34). There was also a strong positive linear relationship between A. avenae ssp. citrulli blossom inoculum dose and the mean percentage of BFB‐infected seedlings (R2 = 0.99) produced in seedling grow‐out assays. These data support the hypothesis that blossom colonization might be involved in seed infestation under field conditions.  相似文献   

2.
Acidovorax avenae subsp. citrulli is a Gram-negative bacterium and is the causal agent of bacterial fruit blotch (BFB) in cucurbits. In this study, the role played by the acyl-homoserine lactone (AHL)-type quorum sensing (QS) system in growth, swimming motility and virulence was characterized in A. avenae subsp. citrulli strain XJL12. The AHL synthase gene of the QS system from strain XJL12, defined as aacI, was cloned and characterized, and an aacI disruption mutant was generated. The aacI mutant XJL13 abolished the ability to produce AHL molecules, whereas the corresponding complemented strain CPXJL13 produced wild-type levels of AHL. The aacI mutant exhibited a significant decrease in growth rate relative to the wild type in minimal medium, and was partially impaired in swimming motility. In plants, the aacI mutant showed a significant reduction of virulence in watermelon fruits and melon seedlings when compared to the wild-type strain. However, the aacI mutation in strain XJL12 had no effects on biofilm formation, exopolysaccharide production, or induction of hypersentitive response in Nicotiana tabacum. Our data suggest that the AHL-type QS may play a key role in pathogen virulence and this may provide an opportunity to explore novel approaches for managing BFB in cucurbits by QS interference.  相似文献   

3.
Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.  相似文献   

4.
Acidovorax citrulli can be divided into two genetic groups: group I and group II based primarily on pulsed‐field gel electrophoresis (PFGE) and multilocus sequence classification (MLST). To distinguish more rapidly between strains of the two groups, a pair of specific primer for specific polymerase chain reaction (PCR) that can identify group II strains was designed based on the pilL gene of a group II strain, AAC00‐1. PCR results showed that a 332‐bp band was generated for 51 of 52 group II strains whereas only three of 93 group I strains were positive, largely consisting with previous studies of A. citrulli classification. Results of PCR showed the primers were able to detect group II strains of A. citrulli and distinguish between strains of groups I and II rapidly and accurately.  相似文献   

5.
Isolates of Fusarium oxysporum from Abaco, the Bahamas, whether obtained from wilted plants of cucumber (Cucumis sativus) or watermelon (Citrullus lanatus), were pathogenic to cucumber, watermelon, and cantaloupe (Cucumis melo var. reticulatus). The West Indian gherkin (Cucumis anguria), pumpkin (Cucurbita pepo), and three cultivars of summer squash (C. pepo var. melopepo) were not susceptible. Strains of F. oxysporum from wilted cucumber or watermelon plants from Florida were highly pathogenic only to their original host species and are regarded as different formae speciales.  相似文献   

6.
A rapid, sensitive and visual loop‐mediated isothermal amplification (LAMP) method for detecting Acidovorax citrulli in cucurbit seed was developed in this study. The LAMP primers were designed to recognize the non‐ribosomal peptide synthetase (NRPS) gene (locus tag: Aave_4658) from A. citrulli. The LAMP assay was conducted at 64°C in 1 hr with calcein as an indicator. The sensitivity and specificity of the LAMP assay were further compared with those of a conventional polymerase chain reaction (PCR). The LAMP assay is highly specific to A. citrulli, and no cross‐reaction was observed with other bacterial pathogen. The sensitivity of the LAMP assay was 100‐fold higher than that of conventional PCR with a detection limit of 1 pg of genomic DNA. Using the LAMP assay, 7 of 12 cantaloupe seedlots collected from Xinjiang province were determined to be positive for A. citrulli. In contrast, only 2 of 12 seedlots showed positive for the pathogen with conventional PCR. Moreover, A. citrulli was detected in 100% of artificially infested seedlots with 0.01% infestation or greater. Our results demonstrated that the LAMP assay was simple, visual and sensitive for detecting A. citrulli, especially in seed health testing. Hence, this method has great potential application in routine detecting seed‐borne pathogens and reducing the risk of epidemics.  相似文献   

7.
Association between bacteria Photorhabdus and their nematode hosts Heterorhabditis represents one of the emerging models in symbiosis studies. In this study, we isolated the bacterial symbionts of the nematode Heterorhabditis georgiana. Using gyrB sequences for phylogenetic analysis, these strains were shown to be part of the species of Photorhbdus luminescens but with clear separation from currently recognized subspecies. Physiological properties and DNA–DNA hybridization profiles also supported the phylogenetic relationship of these strains. Therefore, a new subspecies, Photorhabdus luminescens subsp. kleinii subsp. nov., is proposed with the type strain KMD37T (=DSM 23513 =ATCC =NRRL B-59419).  相似文献   

8.
Staphylococcus cohnii strains isolated from various primates could be separated into three distinct groups or subspecies on the basis of phenotypic characterization and DNA-DNA hybridization techniques. These included a human-specificS. cohnii subspecies (denoted here as subsp. 1), a widely distributed primateS. cohnii subspecies (subsp. 2), and a Ceboidea (New World monkey)-specificS. cohnii subspecies (subsp. 3). Divergence of the latter subspecies from the other two is great enough to place it in a near (separate)-species status.S. cohnii represents the third example of aStaphylococcus species where DNA divergence has been demonstrated between human and nonhuman primate-adapted populations. The data presented in this report continue to support the hypothesis that at least certain staphylococci have evolved together with their hosts by conjugate evolution.Paper No. 8555 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N.C. 27650  相似文献   

9.
Since 1988, cucurbit crops, particularly watermelon, cantaloupe, and squash, grown in Oklahoma and Texas have experienced devastating losses from cucurbit yellow vine disease (CYVD), caused by the phloem-limited bacterium Serratia marcescens Bizio. Squash bug, Anasa tristis (De Geer), is a putative vector of the pathogen. In 2000-2001, overwintering populations of squash bug collected from DeLeon, TX, were tested for their ability to harbor and transmit the bacterium. Individual squash bugs (n = 73) were caged serially for periods of up to 7 d on at least four squash seedlings. Two studies were conducted, one with insects collected in November 2000 placed on first true leaf-stage seedlings and the second with insects from an April 2001 collection, placed on 3-5 true leaf-stage squash. Controls consisted of squash seedlings caged without insects. Squash bug transmission rates of the pathogen in studies I and II were 20 and 7.5%, respectively. Overall, 11.0% of the squash bugs harbored and successfully transmitted the bacterium to squash seedlings. All control plants tested negative for S. marcescens and did not exhibit CYVD. Female squash bugs killed a significantly greater proportion of young first leaf-stage seedlings than males. Feeding on 3-5 leaf-stage squash resulted in no plant mortality regardless of squash bug gender. This study demonstrated that the squash bug harbors S. marcescens in its overwintering state. The squash bug-S. marcescens overwintering relationship reported herein greatly elevates the pest status of squash bug and places more importance on development of integrated strategies for reducing potential overwintering and emerging squash bug populations.  相似文献   

10.
A selected group of strains of Pseudomonas syringae subsp. savastanoi from olive, oleander and ash were compared with pathogenicity tests and with DNA restriction fingerprinting using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining. The strains from each host were distinguishable by their pathogenicity to the same host and to the other two plant species. A division into the same groups was obtained with unweighted pair-group method with averages (UPGMA) clustering of the data from genomic fingerprinting, even though high overall similarity between the strains also indicated that they formed a single, well characterized taxon. It seems clear that the subspecies savastanoi of P. syringae comprises at least 3 groups of strains that differ in their precise host range, in the nature of the symptoms induced on the individual hosts, and in their genomic profile.  相似文献   

11.
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is one of the most important bacterial diseases of cucurbits worldwide. However, the mechanisms associated with A. citrulli pathogenicity and genetics of host resistance have not been extensively investigated. We idenitfied Nicotiana benthamiana and Nicotiana tabacum as surrogate hosts for studying A. citrulli pathogenicity and non-host resistance triggered by type III secreted (T3S) effectors. Two A. citrulli strains, M6 and AAC00-1, that represent the two major groups amongst A. citrulli populations, induced disease symptoms on N. benthamiana, but triggered a hypersensitive response (HR) on N. tabacum plants. Transient expression of 19 T3S effectors from A. citrulli in N. benthamiana leaves revealed that three effectors, Aave_1548, Aave_2708, and Aave_2166, trigger water-soaking-like cell death in N. benthamiana. Aave_1548 knockout mutants of M6 and AAC00-1 displayed reduced virulence on N. benthamiana and melon (Cucumis melo L.). Transient expression of Aave_1548 and Aave_2166 effectors triggered a non-host HR in N. tabacum, which was dependent on the functionality of the immune signalling component, NtSGT1. Hence, employing Nicotiana species as surrogate hosts for studying A. citrulli pathogenicity may help characterize the function of A. citrulli T3S effectors and facilitate the development of new strategies for BFB management.  相似文献   

12.
We analysed interactions in the system of two Barley Yellow Dwarf Virus (BYDV) strains (MAV and PAV), and wheat (cv. Tinos) as host plant for the virus, and the cereal aphid Sitobion avenae (F.) as vector, in particular whether or not infection by the virus might alter host plant suitability in favour of vector development. By measuring the amino acid and sugar content in the phloem sap of infected and non‐infected wheat plants we found a significant reduction in the concentration of the total amount of amino acids on BYDV‐infected plants. Qualitative and quantitative analysis of honeydew and honeydew excretion indicated a lower efficiency of phloem sap utilisation by S. avenae on infected plants. In addition, S. avenae excreted less honeydew on infected plants. Both BYDV strains significantly affected aphid development by a reduction in the intrinsic rate of natural increase. Hence, infection by the virus reduced the host suitability in terms of aphid population growth potential on BYDV‐infected plants. However, more alate morphs developed on virus‐infected plants. These findings are discussed in relation to the population dynamics of S. avenae, and, as a consequence, the spread of BYDV.  相似文献   

13.
Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.  相似文献   

14.
15.
Aims: Phenotypic and molecular methods were used to identify and compare the strain composition of three industrial dairy starters used for the manufacture of viili. Methods and Results: Preliminary differentiation was made by phenotypic methods. Genotypic differentiation was carried out using polymerase chain reaction (PCR) and further characterization at strain level by pulsed‐field gel electrophoresis (PFGE). The isolates could be assigned as acid‐producing Lactococcus lactis strains of both lactis and cremoris subspecies, and aroma producers, identified as L. lactis subsp. lactis biovar diacetylactis and Leuconostoc mesenteroides. PCR analysis discriminated between the lactococcal subspecies, and cluster analysis of the digestion patterns of PFGE analysis revealed different genotypes in each subspecies. Each Leuconostoc‐genotype seemed to be specific to only a single starter mix. Conclusions: The work proved that in addition to L. lactis subsp. lactis biovar diacetylactis and Leuc. mesenteroides subsp. cremoris, commercial viili starters of traditional origin may contain (i) only L. lactis subsp. cremoris, (ii) both L. lactis subsp. cremoris and L. lactis subsp. lactis as a minority, and – as a new discovery – (iii) only L. lactis subsp. lactis. Significance and Impact of the Study: The results obtained give an overview of the microbial population of viili starters and can be exploited in the development of optimized starter cultures for industrial‐scale manufacture of viili.  相似文献   

16.
Inhibition of flowering of cucumber grafted on rooted squash stock   总被引:1,自引:0,他引:1  
For the elucidation of the mechanisms of floral transition in indifferent plants, cucumber seedlings ( Cucumis sativus cv. Rennsei or cv. Shimoshirazu-jibai) were grafted onto squash seedlings ( Cucurbita maxima Duchesne X C. moschata Duchesne cv. Shintosa-ichigou) of which the meristems had been removed, and the effect on flower induction on the cucumber scion was examined. In both cultivars, the grafted cucumber bore no flowers, whereas control plants developed flowers above the second to fourth nodes. The inhibition of flower formation on the grafted cucumber scion occurred even when the root of cucumber was left with the squash root on the grafted plant, and flower formation occurred after removal of the squash stock. The inhibitory effect of the squash stock in the presence of the cucumber root was abolished by removal of the squash root. Neither the dry weight of stem plus leaf nor the chlorophyll content of the leaf, as indicators of vegetative growth, were correlated with flower formation on cucumber plants that had been grafted in the presence of cucumber roots on whole, cotyledon-free or root-free squash stock. These results indicate that flower formation in cucumber was inhibited by a factor produced by squash roots, an inhibition probably not involved in the modulation of vegetative growth. The root may control floral transition by the production of inhibitory factors in some day-neutral Cucurbitaceae plants.  相似文献   

17.
Fourteen plant species, including 30 genotypes, were assessed for host suitability to Meloidogyne megadora in a growth room at 20 to 28°C. Host suitability was based on the gall index (GI) and the reproduction factor (Rf):final population density (Pf)/initial population density (Pi). The presence of distinct galling was observed on roots of six plant species, and reproduction occurred on five of the 14 species tested. Three cultivars of cantaloupe (cvs. Branco do Ribatejo, Concerto, and Galia), three of cucumber (cvs. LM 809, Half Long Palmetto, and Market More), six of banana (cvs. Maçá, Ouro Branco, Ouro Roxo, Prata, Páo, and Valery), and one of broad bean (cv. Algarve) were considered susceptible (Pf/Pi > 1). Resistant cultivars (Pf/Pi = 0) included beet (cv, Crosby), pepper (cv. LM 204), watermelon (cvs. Black Magic and Crimson Sweet), tomato (cvs. Moneymaker and Rossol), radish (cv. Cherry Belle), and corn (cv. Dunia); sunn hemp and black velvetbean genotypes were also resistant. All Brassica cultivars were galled, although no egg masses were observed (Pf/Pi = 0), and classified as resistant/hypersensitive.  相似文献   

18.
Parallel Evolution under Domestication and Phenotypic Differentiation of the Cultivated Subspecies of Cucurbita pepo (Cucurbitaceae). Cucurbita pepo (pumpkin, squash, gourd, Cucurbitaceae) is an ancient North American domesticate of considerable economic importance. Based on molecular genetic polymorphisms, two cultivated lineages of this species, each consisting of very many edible–fruited cultigens, have been recognized, C. pepo subsp. pepo and C. pepo subsp. texana. However, the phenotypic commonalities and differences between these two subspecies have not as yet been systematically collected and organized. Among the evolutionary developments common to the two subspecies are the increased size of the plant parts, less plant branching, and premature loss of chlorophyll in the exocarp of the fruits. In both subspecies, bush growth habit, conferred by allele Bu, is common to the cultigens grown for consumption of the immature fruits, as is the deviation from the 1:1 ratio of fruit length to fruit width. A major characteristic differentiating between the edible–fruited cultigens of the respective subspecies are the longitudinal protrusions, in subsp. pepo, versus depressions, in subsp. texana, of the fruit surface corresponding with the subsurface primary carpellary vein tracts. Subsp. pepo also has larger fruits and larger and longer seeds. In addition, some alleles affecting stem color, leaf mottling, multiple flower bud production, and fruit characteristics are frequently occurring to nearly fixed in one subspecies but are rare to less common in the other.  相似文献   

19.
We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13‐Dye) can target and distinguish pathogenic infections of F‐ pili expressing and F ‐negative strains of E. coli. Further, in order to tune this M13‐Dye complex suitable for targeting other strains of bacteria, we have used a 1‐step reaction for creating an anti‐bacterial antibody ‐M13‐Dye probe. As an example, we show anti‐S. aureus ‐M13‐Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号