首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurotrophins can influence multiple cellular functions depending on the cellular context and the specific receptors they interact with. These neurotrophic factors have been extensively studied for their ability to support neuronal survival via Trk receptors and to induce apoptosis via the p75(NTR). However, the p75(NTR) is also detected on cell populations that do not undergo apoptosis in response to neurotrophins. In particular, the authors have detected p75(NTR) expression on astrocytes during development and after seizure-induced injury. In this study, the authors investigated the role of Nerve growth factor (NGF) in regulating astrocyte proliferation and in influencing specific aspects of the cell cycle. The authors have demonstrated that NGF prevents the induction of cyclins and their association with specific cyclin-dependent kinases, and thereby prevents progression through the G1 phase of the cell cycle. Since the authors have previously shown that p75(NTR) but not TrkA, is expressed in astrocytes, these data suggest that activation of p75(NTR) promotes withdrawal of astrocytes from the cell cycle, which may have important consequences during development and after injury.  相似文献   

2.
3.
To explore the molecular mechanisms of nerve growth factor (NGF) action, we have attempted to identify proteins that immunoprecipitate with the NGF receptor. An anti-NGF receptor antibody was developed that immunoprecipitated the 75-Kd receptor in PC-12 cells. In [35S]methionine-labeled cells lysed with nonionic detergent, immunoprecipitation with this antireceptor antisera specifically brought down several associated proteins, although prior treatment of cells with NGF produced no apparent change in the distribution of these proteins. However, in vitro phosphorylation assays of the immunoprecipitated complex revealed the presence of a serine kinase that phosphorylated two predominant substrates with Mrs of 60 and 130 Kd. Prior treatment of cells produced no change in the appearance of the 60-Kd phosphoprotein, but NGF did stimulate the appearance of the 130-Kd protein. This effect was observed with as little as 0.1 nM NGF and was maximal at 5 min, but declined thereafter. Prior treatment of cells with NGF did not increase the phosphorylation of enolase added exogenously to the immunoprecipitates, suggesting that this action of NGF may have reflected the hormone-dependent association of the 130-Kd protein with the receptor, rather than activation of a receptor-associated kinase. Thus the association of the NGF 75-Kd receptor with a 130-Kd protein may be involved in signal transduction for the growth factor, although the role of this receptor in the NGF-dependent tyrosine phosphorylation remains unclear.  相似文献   

4.
Cell death is the final common pathway of cognitive decline in Alzheimer's disease (AD). Nervous system growth factors, or neurotrophic factors, are substances naturally produced in the nervous system that support neuronal survival during development and influence neuronal function throughout adulthood. Notably, in animal models, including primates, neurotrophic factors prevent neuronal death after injury and can reverse spontaneous neuronal atrophy in aging. Thus, neurotrophic factor therapy has the potential to prevent or reduce ongoing cell loss in disorders such as AD. The main challenge in clinical testing of neurotrophic factors has been their delivery to the brain in sufficient doses to impact cell function, while restricting their delivery to specific sites to prevent adverse effects from broad distribution. This article reviews progress in evaluating the therapeutic potential of growth factors, from early animal models to human clinical trials currently underway in AD.  相似文献   

5.
6.
7.
Nerve growth factor   总被引:2,自引:0,他引:2  
  相似文献   

8.
Nerve growth factor   总被引:2,自引:0,他引:2  
Nerve growth factor (NGF) is widely recognized as a target-derived factor responsible for the survival and maintenance of the phenotype of specific subsets of peripheral neurons and basal forebrain cholinergic nuclei during development and maturation. Other NGF-responsive cells are now known to belong to the hemopoietic-immune system and to populations in the brain involved in neuroendocrine functions. The concentration of NGF is elevated in a number of inflammatory and autoimmune states in conjunction with increased accumulation of mast cells. Mast cells and NGF appear to be involved in neuroimmune interactions and tissue inflammation. Mast cells themselves are capable of producing and responding to NGF, suggesting that alterations in mast cell behavior may trigger maladaptive neuroimmune tissue responses, including those of an autoimmune nature. Moreover, NGF exerts a modulatory role on sensory nociceptive nerve physiology in the adult, and appears to correlate with hyperalgesic phenomena occurring in tissue inflammation. NGF can thus be viewed as a multifactorial modulator of neuroimmune-endocrine functions.  相似文献   

9.
Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment.  相似文献   

10.
Fibroblast growth factor receptors (FGFR) are widely expressed in many tissues and cell types, and the temporal expression of these receptors and their ligands play important roles in the control of development. There are four FGFR family members, FGFR-1-4, and understanding the ability of these receptors to transduce signals is central to understanding how they function in controlling differentiation and development. We have utilized signal transduction by FGF-1 in PC12 cells to compare the ability of FGFR-1 and FGFR-3 to elicit the neuronal phenotype. In PC12 cells FGFR-1 is much more potent in the induction of neurite outgrowth than FGFR-3. This correlated with the ability of FGFR-1 to induce robust and sustained activation of the Ras-dependent mitogen-activated protein kinase pathways. In contrast, FGFR-3 could not induce strong sustained Ras-dependent signals. In this study, we analyzed the ability of FGFR-3 to induce the expression of sodium channels, peripherin, and Thy-1 in PC12 cells because all three of these proteins are known to be induced via Ras-independent pathways. We determined that FGFR-3 was capable of inducing several Ras-independent gene expression pathways important to the neuronal phenotype to a level equivalent of that induced by FGFR-1. Thus, FGFR-3 elicits phenotypic changes primarily though activation of Ras-independent pathways in the absence of robust Ras-dependent signals.  相似文献   

11.
12.
Y Yarden  J Schlessinger 《Biochemistry》1987,26(5):1443-1451
Epidermal growth factor (EGF) receptor from A-431 cells was purified by affinity chromatography with monoclonal anti-receptor antibodies. The purified radiolabeled receptor was incubated with EGF and then analyzed by gel electrophoresis under nondenaturing conditions. In these gels, the EGF receptor migrates in two forms: a fast-migrating (low) form and an EGF-induced slow-migrating (high) form. On the basis of the various control and calibration experiments described, it is concluded that the low form represents the monomeric 170-kilodalton EGF receptor and the high form represents an EGF receptor dimer. The binding of EGF causes a rapid, temperature-sensitive dimerization of the EGF receptor. Receptor dimerization is fully reversible and involves saturable, noncovalent interactions that are stable at neutral pH and in nonionic detergents. Both the monomeric and dimeric forms of the receptor bind EGF and undergo self-phosphorylation. The dimeric form of the receptor may possess higher ligand binding affinity, and it seems to be phosphorylated earlier than the monomeric form following the addition of EGF and [gamma-32P]ATP. On the basis of these results, it is concluded that receptor oligomerization is an intrinsic property of the occupied EGF receptor and that it may play a role in the activation of the kinase function and the subsequent transmembrane signaling process.  相似文献   

13.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

14.
Degenerate oligonucleotide primers complementary to the highly conserved subdomains III and VIII of subclass III tyrosine kinase receptors (TKr-III) were utilized to amplify rat aortic cDNA by polymerase chain reaction. Most of the cloned DNA products were rat platelet-derived growth factor receptor beta and macrophage-colony stimulating growth factor receptor cDNAs. Screening of the clones with probes coding for the receptor-specific kinase insert domain allowed the identification of a novel putative TKr-III cDNA, which hybridized with a approximately 6.1 kb mRNA with a distinctive tissue distribution. In situ hybridization on rat tissues and Northern analysis of cultured cells indicate that endothelial cells express a novel putative TKr-III mRNA.  相似文献   

15.
N Mazurek  G Weskamp  P Erne  U Otten 《FEBS letters》1986,198(2):315-320
Nerve growth factor (NGF) induces degranulation of rat peritoneal mast cells (RPMC) in a dose-dependent manner, providing direct evidence for its action on non-neuronal tissues. Activation of RPMC by NGF depends on lysophosphatidylserine and extracellular calcium. NGF-mediated RPMC degranulation is not coupled to a transient increase in intracellular free calcium ([Ca2+]i). It is suggested that NGF has a unique mode of action independent of [Ca2+]i and presumably also without involving protein kinase C activation as indicated by the effects of phorbol esters and NGF on antigen-evoked [Ca2+]i rise.  相似文献   

16.
Nerve growth factor induces rapid redistribution of F-actin in PC12 cells   总被引:4,自引:0,他引:4  
H Paves  T Neuman  M Metsis  M Saarma 《FEBS letters》1988,235(1-2):141-143
Nerve growth factor (NGF) induces the redistribution of F-actin in rat pheochromocytoma PC12 cells within 2-10 min, whereas epidermal growth factor (EGF) has no effect on microfilament organization. This redistribution of F-actin in PC12 cells is not protein synthesis dependent, but can be blocked by methyltransferase inhibitors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号