共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of gonadotropin-releasing hormone receptor concentration in cultured female rat pituitary cells by estradiol treatment 总被引:1,自引:0,他引:1
G Emons H G Hoffmann C Brack O Ortmann R Sturm P Ball R Knuppen 《Journal of steroid biochemistry》1988,31(5):751-756
Short-term (0.5-4 h) treatment of rat pituitary cells in culture with estradiol (E2) results in a significant decrease of Gonadotropin-Releasing Hormone (GnRH) induced LH-release. We studied whether changes in the concentrations of GnRH-receptors (GnRH-R) might account for this phenomenon: pituitary cells from adult female rats were incubated for 4 or 24 h in the presence or absence of 10(-9) M E2. Then saturation curves of D-Ala6-des-Gly10-GnRH ethylamide binding were obtained. In addition, binding studies were carried out in cultures incubated for 0.5, 1, 2 or 4 h with or without 10(-9) M E2 using a near saturating concentration of GnRH-analog. No changes of GnRH-R affinity occurred (4 h experiments: Ka in vehicle treated cells: 0.94 +/- 0.2 x 10(9) M-1, Ka in E2 treated cells: 1.06 +/- 0.3 x 10(9) M-1; 24 h experiments: Ka vehicle: 0.95 +/- 0.2 x 10(9) M-1, Ka E2: 0.82 +/- 0.3 x 10(9) M-1). The GnRH-R concentrations, however, were significantly reduced (44 +/- 3%; P less than 0.001) by 4 h E2 treatment and increased (by 68 +/- 8%; P less than 0.01) by 24 h of E2 treatment. The GnRH induced LH-release in aliquots of the same cell preparations was significantly reduced after 4 h and markedly increased after 24 h of E2 treatment. The experiments on the time-course of the reduction of D-Ala6-GnRH-binding by E2 treatment showed that the number of GnRH-R was significantly decreased (24 +/- 1%; P less than 0.05) already after 0.5 h of exposure to the estrogen. This is also the time period after which the negative E2-effect on GnRH-induced LH-release becomes significant. These data provide first evidence that the short-term negative E2-effect on GnRH induced LH-release by rat pituitary cells in culture could be mediated via a reduction of available GnRH-R. 相似文献
2.
Solubilization and purification of rat pituitary gonadotropin-releasing hormone receptor 总被引:1,自引:0,他引:1
Gonadotropin-releasing hormone (GnRH) receptors were solubilized from rat pituitary membrane preparations in an active form by using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid). The solubilized receptor exhibits high affinity, saturability, and specificity. The soluble supernatant retained 100% of the original binding activity when stored at 4 or -20 degrees C in the presence of 10% glycerol. The receptors were resolved into two components on the basis of chromatography on wheat germ agglutinin-agarose. Homogeneous receptor preparation was obtained by two cycles of affinity chromatography on immobilized avidin column coupled to [biotinyl-D-Lys6]GnRH. The overall recovery of the purified receptor was 4-10% of the initial activity in the CHAPS extract, and the calculated purification -fold was approximately 10,000 to 15,000. Analysis of iodinated purified GnRH receptors by autoradiography indicated the presence of two bands, Mr = 59,000 and 57,000. This was confirmed by photoaffinity labeling of the partially purified receptors and suggests that both components can specifically bind the hormone. 相似文献
3.
To study the effect of human beta-endorphin (beta h-End) on pituitary response to gonadotropin-releasing hormone (LH-RH) and thyrotropin-releasing hormone (TRH) in vitro, we used dispersed rat pituitary cells. When beta h-End (10(-7) M) was simultaneously added along with LH-RH, its stimulatory effect was blocked and naloxone (NAL, 10(-5) M) did not reverse the beta h-End inhibitory effect. NAL alone elicited an increase in LH release, but in the presence of both stimulants (LH-RH and NAL), LH secretion was lower than that observed with LH-RH alone. TRH stimulatory activity of TSH and PRL secretion was blunted by the presence of beta h-End (10(-7) M) and was not reversed by NAL (10(-5) and 10(-3) M). These data suggest that beta h-End directly blocks the LH, TSH- and PRL-secreting activity of both LH-RH and TRH at the pituitary level. This beta h-End effect is not reversed by the specific opiate receptor blocker NAL. 相似文献
4.
Interaction of fluorescent gonadotropin-releasing hormone with receptors in cultured pituitary cells 总被引:2,自引:0,他引:2
Z Naor D Atlas R N Clayton D S Forman A Amsterdam K J Catt 《The Journal of biological chemistry》1981,256(6):3049-3052
A fluorescent derivative of the gonadotropin-releasing hormone (GnRH) agonist analog, [D-Lys6]GnRH, was synthesized for receptor studies and shown to be biologically active. The rhodamine-derivatized peptide (Rh-GnRH) retained 40% of the receptor binding activity of [D-Lys6]GnRH, and 50% of the luteinizing hormone-releasing activity assayed in cultured pituitary cells. The fluorescent analog was employed to visualize the distribution of GnRH receptors in cultured pituitary cells, using the technique of video-intensified fluorescence microscopy. The binding of Rh-GnRH was confined to the large gonadotrophs which comprised 15% of the cell population. The specificity of the binding was shown by the absence of significant fluorescence in the presence of a 100-fold excess of [D-Lys6]GnRH, or when Rh-GnRH was incubated with choriocarcinoma, neuroblastoma, or 3T3 cell lines devoid of GnRH receptors. The interaction of Rh-GnRH with living pituitary cells was characterized by an initial diffuse distribution, followed by the formation of polar aggregates that later appeared to be internalized. These observations emphasize the value of fluorescent derivatives of GnRH for elucidating the course of the interaction with specific receptors on pituitary gonadotrophs. The initial results indicate that GnRH-receptor complexes undergo aggregation during stimulation of luteinizing hormone release, and are later internalized for subsequent degradation and/ or intracellular actions. 相似文献
5.
6.
An BS Selva DM Hammond GL Rivero-Muller A Rahman N Leung PC 《The Journal of biological chemistry》2006,281(30):20817-20824
Regulation of gonadotropin production involves interplay between steroids and neuropeptides, and we have examined the effects of gonadotropin-releasing hormones (GnRH I and GnRH II) on progesterone receptor (PR) activation in alphaT3-1 pituitary cells. Treatment with GnRHs activated a progester-one response element (PRE)-luciferase reporter gene, and this was blocked by protein kinase C and protein kinase A inhibitors but not by RU486. Treatment with GnRHs phosphorylated the PR at Ser(294) and increased PR translocation to the nucleus within 1 h. Interactions between the PR and several coactivators were examined, and treatment with GnRHs specifically induced PR-steroid receptor coactivator-3 (SRC-3) interactions within 8 h. In chromatin immunoprecipitation assays, recruitment of PR and SRC-3 by the PREs of the luciferase reporter gene or the gonadotopin alpha-subunit gene promoter was also increased by GnRHs within 8 h, while progesterone-induced recruitment of PR to the PREs occurred in association with much less SRC-3. A small interfering RNA knockdown of type I GnRH receptor levels reduced PR activation by GnRHs, while progesterone-dependent PR activation was unaffected. Moreover, small interfering RNA knockdown of SRC-3 abolished PRE-luciferase trans-activation by the PR in response to GnRHs. Collectively, these data indicate that PR activation by GnRHs in alphaT3-1 cells is type I GnRH receptor-mediated and that trans-activation of PR-responsive genes requires SRC-3 in this context. 相似文献
7.
To investigate the mechanisms by which GnRH regulates FSH production in the human fetus, dispersed pituitary cells from second trimester human fetuses were cultured on surface-modified plates. Exposure of cells to GnRH [(10(-8) and 10(-7) mol/L), study I] or [D-Ala6]des-Gly10-GnRH ethylamide (DALA) [(10(-11) to 10(-7) mol/L), study II] for 48 h resulted in an elevation of total FSH which correlated with an increase in releasable, but not nonreleasable, FSH. When pituitary cells were incubated for 24, 48 and 72 h with and without 10(-8) mol/L GnRH (study III), total FSH was significantly increased in cells cultured for 48-72 h without GnRH compared to cells lysed at the beginning of the incubation (p less than 0.001). At all intervals, GnRH significantly enhanced total FSH compared to respective controls (p less than 0.05). 相似文献
8.
Isolation and characterization of cDNAs encoding the rat pituitary gonadotropin-releasing hormone receptor. 总被引:5,自引:0,他引:5
U B Kaiser D Zhao G R Cardona W W Chin 《Biochemical and biophysical research communications》1992,189(3):1645-1652
Rat pituitary cDNAs encoding the full peptide coding sequence of the rat gonadotropin-releasing hormone receptor were isolated and characterized. The deduced amino acid sequence encodes a protein of 327 residues with seven putative transmembrane domains characteristic of the family of G-protein coupled receptors. It is 95% identical at the amino acid level with the mouse gonadotropin-releasing hormone receptor. An mRNA of 4.5 Kb was identified in the rat pituitary, ovary, and testis, and in murine alpha T3 cells. In addition, a larger mRNA species of 5.0-5.5 Kb was present in these rat tissues, and a smaller mRNA species of 1.8 Kb was present in the rat pituitary and ovary, and in alpha T3 cells. The receptor mRNA levels were increased in the female rat pituitary after ovariectomy compared to levels in intact female rats. 相似文献
9.
Summary 1. We examined the potential effect of GnRH pulses on pituitary estrogen receptor mRNA level.2. The treatment of perifused pituitary cell aggregates with four hourly pulses of GnRH (10 nM/1 min/h) resulted in a marked increase in the steady-state level of ER mRNA (25%vs unstimulated control, n = 3).3. No changes were observed for the LH ß mRNA. Data suggest, for the first time, that a cross-talk between the GnRH and nuclear ER may occur in the gonadotrope cells. 相似文献
10.
A Starzec M Jutisz R Counis 《Biochemical and biophysical research communications》1988,153(2):664-670
We have studied the time course (0-5h) of the stimulatory effect of the hypothalamic gonadotropin-releasing hormone (GnRH) on the biosynthesis of lutropin (LH) polypeptide chains, as measured by the incorporation of [35S] methionine into proteins synthesized in cultured rat anterior pituitary cells in the absence or presence of 10nM GnRH. Labeled polypeptides, immunologically related to LH subunits alpha and beta, were isolated by specific immunoprecipitation, analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, then revealed by fluorography and quantified by counting the excised bands. This methodology allowed us to detect the radioactivity incorporated into LH subunits after less than 15 min of incubation. During first 1h of the time-course the quantity of [35S]Met incorporated into both alpha and LH beta subunits was not increased by the presence of GnRH in the incubation medium. A significant increase in the incorporation of radioactivity into LH subunits was observed after 2h of GnRH treatment. However, the increase in LH release into the medium in response to GnRH, as measured by RIA, was immediate. These data demonstrate that GnRH-stimulated synthesis of LH polypeptide chains occurs after a lag of approximately 1h and involves mechanisms different from those governing the stimulation of LH release. 相似文献
11.
The regulation of receptors for gonadotropin-releasing hormone (GnRH) by the homologous decapeptide ligand was analyzed in cultured rat anterior pituitary cells. Assay of GnRH receptors in both intact and disrupted cells showed that GnRH binding to gonadotrophs was rapidly followed by dose-dependent loss of sites that was maximal within 1 h. This early loss of GnRH receptors was not dependent on protein synthesis, and was attributable to ligand-induced processing of the peptide binding sites. No loss of GnRH sites was observed after receptor occupancy by a GnRH antagonist, or after target cell activation by exposure to a depolarizing concentration of KCl to stimulate luteinizing hormone release. After their initial down-regulation, GnRH receptors returned to normal and subsequently increased in concentration after 6 h of incubation. The delayed phase of receptor up-regulation was prevented by treatment with cycloheximide or actinomycin D and was calcium-dependent, being induced by 50 mM KCl and by low concentrations of the calcium ionophore, A23187. Conversely, calcium antagonists such as verapamil and MgCl2 impaired the agonist-induced increase of GnRH receptor sites. These findings have demonstrated that pituitary GnRH receptors undergo two distinct phases of regulation after interaction with the homologous ligand. The initial phase of agonist-dependent receptor loss is followed by a postsecretory phase of receptor recruitment that is dependent on protein synthesis. The expression of GnRH receptors can be completely dissociated from gonadotropin secretion, indicating that fusion of luteinizing hormone secretory granules with the plasma membrane is not a major pathway for transport of GnRH receptors to the cell surface in cultured gonadotrophs. Such changes in cell surface GnRH receptors during activation by the peptide agonist are relevant to the alterations in gonadotroph sensitivity that occur in vivo during physiological regulation of the pituitary gland by GnRH. 相似文献
12.
The participation of type I GnRH receptor (GnRH-R) on GnRH-II-induced gonadotropin secretion in rat pituitary cells was investigated. Furthermore, we extended the study of GnRH-II action to ovarian cells. The GnRH-II was able to mobilize inositol triphosphate (IP(3)) and to induce LH and FSH release in a dose-dependent manner in pituitary cells and in a GnRH-I-like manner. The GnRH-analog 135-18 (agonist for type II GnRH-R and antagonist for type I GnRH-R) was unable to elicit any cellular response tested in these pituitary cells. The GnRH-II responses were blocked by the type I GnRH-R-antagonists CRX or 135-18, suggesting that these effects were mediated by the type I GnRH-R. In contrast to pituitary cells, GnRH-I, but not GnRH-II, elicited an IP(3) response in superovulated ovarian cells; 135-18 also had no effect. However, GnRH-II as well as GnRH-I presented antiproliferative effects on these cells. Surprisingly, 135-18 had stronger antiproliferative effects than either GnRH peptide. The 135-18 analog, but not GnRH-I or GnRH-II, increased progesterone secretion in superovulated ovarian cells. These results strongly suggest that GnRH-II is able to stimulate rat pituitary cells through the type I GnRH-R, with no evidence for the presence of type II GnRH-R. On the other hand, our results indicate a putative GnRH-R in superovulated ovarian cells with response characteristics that differ from those of the GnRH-R in the pituitary. 相似文献
13.
14.
15.
Novel aspects of gonadotropin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs 总被引:11,自引:0,他引:11
The hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone secretion via receptor-mediated activation of phosphoinositide hydrolysis to yield inositol phosphates and diacylglycerol. Application of anion-exchange high-performance liquid chromatography together with absorbance and radiochemical flow detection has enabled both the characterization and quantitative estimation of pituitary cell inositol phosphates and phosphoinositides. In cultured pituitary cells, GnRH caused a rapid and progressive rise in the formation of inositol 1,4,5-trisphosphate and of higher polyphosphoinositols corresponding to inositol tetrakisphosphate, pentakisphosphate, and hexakisphosphate. The inositol 1,4,5-trisphosphate formed during GnRH action was dephosphorylated predominantly via inositol 4-monophosphate rather than the expected metabolite, inositol 1-monophosphate. The catabolism of inositol 4-monophosphate, like that of inositol 1-monophosphate, was inhibited by lithium. For these reasons and because it was the major metabolite of [3H] inositol 1,4,5-trisphosphate in permeabilized gonadotrophs, inositol 4-monophosphate appears to represent a specific marker for ligand-stimulated inositol polyphosphate formation and metabolism. The marked and sustained elevations of inositol 4-monophosphate and inositol 1,4-bisphosphate in GnRH-stimulated gonadotrophs indicate that polyphosphoinositides rather than phosphatidylinositol are the preferred substrates of phospholipase C during GnRH action. 相似文献
16.
The neuropeptide GnRH is a central regulator of mammalian reproductive function produced by a dispersed population of hypothalamic neurosecretory neurons. The principal action of GnRH is to regulate release of the gonadotropins, LH and FSH, by the gonadotrope cells of the anterior pituitary. Using a cultured cell model of mouse pituitary gonadotrope cells, alphaT3-1 cells, we present evidence that GnRH stimulation of alphaT3-1 cells results in an increase in cap-dependent mRNA translation. GnRH receptor activation results in increased protein synthesis through a regulator of mRNA translation initiation, eukaryotic translation initiation factor 4E-binding protein, known as 4EBP or PHAS (protein, heat, and acid stable). Although the GnRH receptor is a member of the rhodopsin-like family of G protein-linked receptors, we show that activation of translation proceeds through a signaling pathway previously described for receptor tyrosine kinases. Stimulation of translation by GnRH is protein kinase C and Ras dependent and sensitive to rapamycin. Furthermore, GnRH may also regulate the cell cycle in alphaT3-1 cells. The activation of a signaling pathway that regulates both protein synthesis and cell cycle suggests that GnRH may have a significant role in the maintenance of the pituitary gonadotrope population in addition to directing the release of gonadotropins. 相似文献
17.
18.
The distribution of gonadal steroid (estrogen, progesterone) receptors in the brain of the adult female mink was mapped by immunocytochemistry. Using a monoclonal rat antibody raised against human estrogen receptor (ER), the most dense collections of ER-immunoreactive (IR) cells were found in the preoptic/anterior hypothalamic area, the mediobasal hypothalamus (arcuate and ventromedial nuclei), and the limbic nuclei (amygdala, bed nucleus of the stria terminalis, lateral septum). Immunoreactivity was mainly observed in the cell nucleus and a marked heterogeneity of staining appeared from one region to another. A monoclonal mouse antibody raised against rabbit uterine progesterone receptor (PR) was used to identify the PR-IR cells in the preoptic/anterior hypothalamic area and the mediobasal hypothalamus (arcuate and ventromedial nuclei). This study also focused on the relationship between cells containing sex-steroid receptors and gonadotropin-releasing hormone (GnRH) neurons on the same sections of the mink brain using a sequential double-staining immunocytochemistry procedure. Although preoptic and hypothalamic GnRH neurons were frequently in close proximity to perikarya containing ER or PR, they did not themselves possess receptor immunoreactivity. The present study provides neuroanatomical evidence that GnRH cells are not the major direct targets for gonadal steroids and confirms for the first time in mustelids the results previously obtained in other mammalian species. 相似文献
19.
The hormonal regulation of ovarian gonadotropin-releasing hormone (GnRH) receptor mRNA expression has been examined by in situ hybridization in hypophysectomized immature rats. In hypophysectomized rats, GnRH receptor mRNA expression is localized in the interstitial cells. After diethylstilbestrol treatment, most follicles grow to form early antral follicles and express GnRH receptor mRNA in the peripheral part of the granulosa layer, indicating that the expression in the growing follicles is estrogen-dependent. Only weak or no expression of the receptor mRNA is detectable in the atretic follicles of hypophysectomized rats, whereas very strong expression has been observed in the granulosa cells of atretic follicles of intact immature rats. Administration of testosterone or a GnRH agonist, both of which are atretic agents for ovarian follicles, to hypophysectomized rats markedly increases the apoptotic cell death of the granulosa cells but fails to induce GnRH receptor mRNA expression. The co-administration of these agents with diethylstilbestrol causes the granulosa cells of atretic follicles to express the receptor mRNA very strongly, suggesting that this mRNA expression in the atretic follicles is also estrogen-dependent. On the other hand, expression of the receptor mRNA in the ovarian interstitial cells is not affected by hypophysectomy or hormone treatments. All of these results clearly indicate that estrogen is essential for the expression of ovarian GnRH receptor mRNA in the granulosa cells of atretic follicles and growing follicles, whereas the expression in the interstitial cells is estrogen-independent. 相似文献
20.
Li WS Lin HR Wong AO 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,132(2):335-341
Using radioimmuno- and ribonuclease protection assays, we examined the effects of gonadotropin-releasing hormone and its analogs on the growth hormone mRNA level and growth hormone secretion in common carp (Cyprinus carpio) pituitary fragments with static incubation. After a 24 h treatment, sGnRH ([Trp(7),Leu(8)]-LHRH) and sGnRH-A ([D-Arg(6),Pro(9)]-LHRH) (0.1 nM-1 microM) elevated the GH mRNA level and stimulated the GH secretion in a dose-dependent manner, with a higher potency for sGnRH-A. In a time-course experiment, the function of sGnRH and sGnRH-A (10 nM) on GH secretion was observed after 6 h incubation, while no action on the GH mRNA level were noted until 12 h after treatment. Comparing mammalian GnRH, avian GnRH and piscine GnRH, sGnRH and sGnRH-A showed the highest potency in increasing GH mRNA level and GH-release, followed by cGnRH-II ([His(5),Tyr(8)]-LHRH), and finally LHRH and LHRH-A([D-Trp(6), Pro(9)]-LHRH). These findings, taken together, suggest that GnRH not only can influence GH release, but also play a role in the regulation of GH synthesis. 相似文献