首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

2.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

3.
Previous studies with the human hepatoblastoma-derived HepG2 cell line in this laboratory have shown that these cells produce high density lipoproteins (HDL) that are similar to HDL isolated from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Experiments were, therefore, performed to determine whether HepG2 HDL could be transformed into plasma-like particles by incubation with LCAT. Concentrated HepG2 lipoproteins (d less than 1.235 g/ml) were incubated with purified LCAT or lipoprotein-deficient plasma (LPDP) for 4, 12, or 24 h at 37 degrees C. HDL isolated from control samples possessed excess phospholipid and unesterified cholesterol relative to plasma HDL and appeared as a mixed population of small spherical (7.8 +/- 1.3 nm) and larger discoidal particles (17.7 +/- 4.9 nm long axis) by electron microscopy. Nondenaturing gradient gel analysis (GGE) of control HDL showed major peaks banding at 7.4, 10.0, 11.1, 12.2, and 14.7 nm. Following 4-h LCAT and 12-h LPDP incubations, HepG2 HDL were mostly spherical by electron microscopy and showed major peaks at 10.1 and 8.1 nm (LCAT) and 10.0 and 8.4 nm (LPDP) by GGE; the particle size distribution was similar to that of plasma HDL. In addition, the chemical composition of HepG2 HDL at these incubation times approximated that of plasma HDL. Molar increases in HDL cholesteryl ester were accompanied by equimolar decreases in phospholipid and unesterified cholesterol. HepG2 low density lipoproteins (LDL) isolated from control samples showed a prominent protein band at 25.6 nm with GGE. Active LPDP or LCAT incubations resulted in the appearance of additional protein bands at 24.6 and 24.1 nm. No morphological changes were observed with electron microscopy. Chemical analysis indicated that the LDL cholesteryl ester formed was insufficient to account for phospholipid lost, suggesting that LCAT phospholipase activity occurred without concomitant cholesterol esterification.  相似文献   

4.
A sonicated dispersion of [14C]lecithin was incubated with high density lipoproteins (HDL) coupled to Sepharose. After washing the gels thoroughly with a buffer, the gels were incubated with low density lipoproteins (LDL); [14C]lecithin was transferred from the sonicated dispersion via HDL-Sepharose to the LDL. The LDL fraction thus prepared showed no contamination with lecithin dispersion or HDL. The lecithin:cholesterol acyltransferase (LCAT) reaction could be completely inhibited during preparation, and the net recovery of radioactivity in LDL was 16% of that of the original lecithin dispersion. The [14C]lecithin in the washed HDL-Sepharose was shown to be a substrate of the LCAT reaction in vitro.  相似文献   

5.
Oral nicotine impairs clearance of plasma low density lipoproteins   总被引:1,自引:0,他引:1  
The effect of chronic oral nicotine intake on plasma low density lipoprotein (LDL) clearance, lipid transfer protein, and lecithin:cholesterol acyltransferase (LCAT) was examined in male atherosclerosis susceptible squirrel monkeys. Eighteen yearling primates were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine monkeys given liquid diet supplemented with nicotine at 6 mg/kg body wt/day for a two-year period. Averaged over 24 months of treatment, animals in the Nicotine group had significantly higher levels of plasma and LDL cholesterol compared to Controls while plasma LCAT activity was similar for both groups. Following simultaneous injection of 3H LDL and 14C high density lipoprotein (HDL) cholesteryl ester (CE), removal of the latter was not altered by oral nicotine while plasma clearance of 3H LDL was dramatically delayed in Nicotine monkeys. Transfer of 14C HDL CE to very low density lipoprotein (VLDL)-LDL particles was greatly accelerated in the Nicotine group vs Controls while the reciprocal movement of 3H LDL CE to HDL was only higher in experimental animals at two time points following injection of the isotopes. Results from this study provide evidence that one major detrimental effect of long-term oral nicotine use is an increase in the circulating pool of atherogenic LDL which is due to: 1) accelerated transfer of lipid from HDL; and 2) impaired clearance of LDL from the plasma compartment. Diminished removal of LDL is of particular importance because an extended residence time of these particles in circulation would increase the likelihood of their deposition in the arterial wall.  相似文献   

6.
We examined the effects of lecithin:cholesterol acyl transferase (LCAT) and of lipoprotein lipase (LPL) on the conversion of high density lipoproteins (HDL) towards fractions of lower densities using the analytical ultracentrifuge. Freshly isolated whole plasma was incubated for 24 h at 37 degrees C in the presence or absence of active enzyme systems. In some cases, lipoproteins were removed by selective precipitations; alternatively, we added triglyceride-rich lipoproteins (TGRLP) or Intralipid to the incubations. The results are as follows. 1) The incubation of whole plasma containing active LCAT leads to a conversion of HDL3 to a fraction of lower density, notably HDL2a. If LCAT is inhibited, the conversion is far less pronounced. 2) If very low and low density lipoproteins are removed by phosphotungstate precipitation and the supernatant is incubated with LCAT, HDL3 shifts towards higher densities. 3) The presence of phosphatidylcholine/cholesterol liposomes or the presence of blood cells as a source of additional LCAT substrate had only little influence on the HDL conversion in our system. 4) The addition of TGRLP or of Intralipid at minimal ratios of 2.5:1 caused an almost complete conversion of HDL3 to HDL2b. This conversion was dependent on active LCAT. 5) LPL also caused a shift of HDL3 to HDL2a if TGRLP was present. HDL2b, however, was not formed by LPL unless LCAT was active.  相似文献   

7.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

8.
In this study we examined the transfer of lipids between reconstituted high density lipoprotein discs (r-HDL) and human low density lipoproteins (LDL) in the presence and absence of lecithin:cholesterol acyltransferase (LCAT) or of plasma phospholipid transfer protein (PLTP). We found that spontaneous transfer of phospholipids from r-HDL to LDL occurred by an apparent first order reaction with a half-time of 5.8 to 6.9 hr depending on the phospholipid. During the time of incubation of r-HDL with LDL (from 0 to 25 hr), the phospholipid content of r-HDL decreased more than 30%, the free cholesterol content increased 2.5-fold, and low levels of cholesteryl esters appeared in r-HDL. These compositional changes gave rise to small discoidal particles with a limiting diameter of 77 A and two molecules of apoA-I per particle. When LCAT was included in the reaction mixture, the r-HDL lost even more phospholipid, lost some free cholesterol, and gained cholesteryl esters relative to the apolipoprotein content, due to the enzymatic reaction. The products of the LCAT reaction had a diameter of 93 A and three, rather than two, apoA-I molecules per particle. Inclusion of PLTP into the reaction mixture accelerated the transfer of phospholipids (half-time of 1.7 hr) and the formation of the 77 A product. In addition to these compositional and morphological changes, which may be important in the interconversions of native HDL subspecies, the prolonged incubations revealed some slow reactions, such as the esterification of LDL cholesterol by LCAT, a background formation of cholesteryl esters in r-HDL, and an apparent hydrolysis of cholesteryl esters in LDL in the presence of r-HDL.  相似文献   

9.
Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.  相似文献   

10.
Prostacyclin (PGI2) production by bovine aortic or human umbilical vein endothelial cells increased when either human high density lipoproteins3 (HDL3) or low density lipoproteins (LDL) were added to a serum-free culture medium. At low concentrations and short incubation times, HDL3 produced more PGI2 than LDL, but LDL was just as effective as HDL3 in 18-hr incubations with high concentrations of lipoproteins. Neither lipoprotein was toxic to the cultures as assessed by [3H]leucine incorporation into cell protein. The stimulatory effect of HDL3 and LDL on PGI2 production decreased as growing cultures became confluent. Incubation with lipoproteins neither enhanced arachidonic acid release nor increased PGI2 formation when the cells were stimulated subsequently with ionophore A23187, indicating that the lipoproteins do not affect the intracellular processes involved in PGI2 production. The addition of albumin reduced the amount of PGI2 formation elicited by HDL3 or LDL. As compared with albumin-bound arachidonic acid, from 6- to 13-fold less PGI2 was produced during incubation with the lipoproteins. Furthermore, the amount of PGI2 formation elicited by the lipoproteins in 18 hr was 4-fold less than that produced during incubation with a fatty acid mixture containing only 5% arachidonic acid, and 3-fold less than when the cells were stimulated with the ionophore A23187 for 20 min. Taken together, our results indicate that human HDL and LDL contribute to endothelial PGI2 production only in a modest way and suggest that this process is not specific for either of these two plasma lipoproteins. In view of the greater participation of albumin-bound arachidonic acid in PGI2 production, plasma lipoproteins may not play as important a role in endothelial prostaglandin formation as has been suggested.  相似文献   

11.
Male squirrel monkeys fed ethanol (ETOH) at variable doses were used to determine whether alcohol modifies levels of plasma low density lipoproteins (LDL) in addition to increasing high density lipoproteins (HDL). Because we earlier showed that high alcohol consumption enhances lipoprotein cholesterol synthesis, experiments were also performed to further assess whether ETOH alters lipoprotein clearance and plasma transfer processes in vivo. Monkeys were divided into three groups: Controls fed isocaloric liquid diet; and Low and High ETOH animals fed liquid diet with vodka substituted isocalorically for carbohydrate at 12 and 24 of the calories, respectively. High ETOH primates had significantly more LDL lipid and protein while serum glutamate oxaloacetate transaminase was similar for the three groups. Although removal of 3H LDL cholesteryl ester (CE) from the plasma compartment was not affected by dietary ETOH, transfer of LDL CE to HDL was impaired in the High ETOH group suggesting a mechanism for the enlarged circulating pool of LDL. Transfer of 14C HDL CE to lower density lipoproteins was similar for the three groups. However, ETOH at both doses delayed clearance of radiolabeled HDL CE from circulation. Thus besides enhancing synthesis of lipoproteins, ETOH at a moderately high dose (24% of calories) influences lipoprotein levels in primates by modifying lipid transfer processes (LDL) as well as by altering clearance (HDL) without adversely affecting liver function.  相似文献   

12.
The unique features of pig ovarian follicular fluids, i.e., presence of high density lipoprotein (HDL) only and lecithin: cholesterol acyltransferase (EC 2.3.1.43; LCAT) activity, provides a good model to study the effect of serum lipoproteins and serum albumin on the LCAT reaction. Invitro cholesterol esterification is enhanced when very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions are added, but is inhibited when one or the other of these lipoproteins is absent. High concentrations of HDL2 result in decreased activation which can be compensated for by the addition of the VLDL-LDL mixture. These findings suggest that the rate of cholesterol esterification in ovarian follicular fluid may be enhanced by providing the exogenous VLDL and LDL as the recipients of HDL-cholesteryl ester. The inhibition of LCAT activity caused by free fatty acid and lysophosphatidylcholine can be partially reversed by the addition of serum albumin, suggesting that serum albumin may regulate the LCAT reaction.  相似文献   

13.
Compositional and maturative parameters of high density lipoproteins (HDL) have been examined during the early stages of rat liver regeneration, when lecithin:cholesterol acyltransferase (LCAT) activity, responsible for the maturation of this lipoprotein class, is markedly decreased. Both HDL subclass distribution and chemical composition are not significantly different from the control, except for a slightly lower cholesterol ester content. Few disc-shaped particles are detectable by electron microscopic observation. Cholesterol ester decrease and presence of immature particles are related, but the entity of the modification is lower than suggested by the deep decrease of LCAT activity. This seems to indicate that proper HDL maturation is assured in the regenerating liver despite low LCAT activity.  相似文献   

14.
The action of lecithin-cholesterol acyltransferase (LCAT, EC 2.3.1.43) on the different pig lipoprotein classes was investigated with emphasis on low-density lipoproteins (LDL). It was demonstrated previously that LDL can serve as substrate for LCAT, probably because they contain sufficient amounts of apoA-I and other non-apoB proteins, known as LCAT activators. Upon a 24-h incubation of pig plasma in vitro in the presence of active LCAT, both pig LDL subclasses, LDL-1 and LDL-2, fused together, forming one fraction, as revealed by analytical ultracentrifugation. This fusion was time dependent, becoming visible after 3 h and complete after 18 h of incubation. Concomitantly, free cholesterol and phospholipids decreased and cholesteryl esters increased. When isolated LDL-1 and LDL-2 were incubated with purified pig LCAT for 24 h, LDL-1 floated toward higher densities and LDL-2 toward lower densities, although this effect was not as pronounced as in incubations of whole serum. In further experiments, pig serum was incubated for various periods of time in the presence and absence of the LCAT inhibitor sodium iodoacetate. The individual lipoproteins then were separated by density gradient ultracentrifugation or by specific immunoprecipitation and chemically analyzed. Both methods revealed that in the absence of active LCAT there was a transfer of free cholesterol from LDL to high-density lipoproteins (HDL) and a small transfer of cholesteryl esters in the opposite direction. In the presence of LCAT the loss of free cholesterol started immediately in all three lipoprotein classes, was most prominent in LDL, and was proportional to the newly synthesized cholesteryl esters incorporated in each fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Apolipoprotein (apo) A-I-containing lipoproteins can be separated into two subfractions, pre-beta HDL and alpha HDL (high density lipoproteins), based on differences in their electrophoretic mobility. In this report we present results indicating that these two subfractions are metabolically linked. When plasma was incubated for 2 h at 37 degrees C, apoA-I mass with pre-beta electrophoretic mobility disappeared. This shift in apoA-I mass to alpha electrophoretic mobility was blocked by the addition of either 1.4 mM DTNB or 10 mM menthol to the plasma prior to incubation, suggesting that lecithin:cholesterol acyltransferase (LCAT) activity was involved. There was no change in the electrophoretic mobility of either pre-beta HDL or alpha HDL when they were incubated with cholesterol-loaded fibroblasts. However, after exposure to the fibroblasts, the cholesterol content of the pre-beta HDL did increase approximately sixfold, suggesting that pre-beta HDL can associate with appreciable amounts of cellular cholesterol. Pre-beta HDL-like particles appear to be generated by the incubation of alpha HDL with cholesteryl ester transfer protein (CETP) and either very low density lipoproteins (VLDL) or low density lipoproteins (LDL). This generation of pre-beta HDL-like particles was documented both by immunoelectrophoresis and by molecular sieve chromatography. Based on these findings, we propose a cyclical model in which 1) apoA-I mass moves from pre-beta HDL to alpha HDL in connection with the action of LCAT and the generation of cholesteryl esters within the HDL, and 2) apoA-I moves from alpha HDL to pre-beta HDL in connection with the action of CETP and the movement of cholesteryl esters out of the HDL. Additionally, we propose that the relative plasma concentrations of pre-beta HDL and alpha HDL reflect the movement of cholesteryl esters through the HDL. Conditions that result in the accumulation of HDL cholesteryl esters will be associated with low concentrations of pre-beta HDL, whereas conditions that result in the depletion of HDL cholesteryl esters will be associated with elevated concentrations of pre-beta HDL. This postulate is consistent with published findings in patients with hypertriglyceridemia and LCAT deficiency.  相似文献   

16.
Ultracentrifugal analysis of the plasma of squirrel monkeys at various times after the injection of [Me-(14)C]choline revealed the specific activities of lecithin in both high (HDL) and low (LDL) density lipoproteins to be similar. This was also true for sphingomyelin. The exchange of phospholipids in vitro was studied by incubating unlabeled plasma with labeled LDL and HDL isolated 40 hr after the injection of [Me-(14)C]choline. Recentrifugation of plasma immediately after the addition of either (14)C-labeled LDL or HDL demonstrated that significant exchanges of both lecithin and sphingomyelin had occurred. In further studies, (14)C-labeled LDL or HDL were incubated with plasma and the low density lipoproteins were rapidly isolated by precipitation with heparin-Mn(2+). Complete equilibration of lecithin and sphingomyelin between LDL and HDL was attained after 4 and 5 hr, respectively. The fractional exchange rates for lecithin and sphingomyelin of LDL to HDL were 0.60 hr(-1) and 0.45 hr(-1). Corresponding values for HDL to LDL were 0.51 hr(-1) and 0.53 hr(-1). Inhibition of plasma lecithin:cholesterol acyltransferase reduced the exchange of sphingomyelin but had no effect on lecithin exchange. The rates of exchange of four lecithin subfractions of different unsaturation between LDL and HDL were the same.  相似文献   

17.
The role of lecithin:cholesterol acyltransferase (LCAT) in the formation of plasma high density lipoproteins (HDL) was studied in a series of in vitro incubations in which perfusates from isolated African green monkey livers were incubated at 37 degrees C with partially purified LCAT for between 1 and 13 hr. The HDL particles isolated from monkey liver perfusate stored at 4 degrees C and not exposed to added LCAT contained apoA-I and apoE, were deficient in neutral lipids, and were observed by electron microscopy as discoidal particles. Particle sizes, measured as Stokes' diameters by gradient gel electrophoresis (GGE), ranged between 7.8 nm and 15.0 nm. The properties of perfusate HDL were unchanged following incubation at 37 degrees C in the presence of an LCAT inhibitor. However, HDL subfractions derived from incubations at 37 degrees C with active LCAT contained apoA-I as the major apoprotein, appeared round by electron microscopy, and possessed chemical compositions similar to plasma HDL. The HDL isolated from perfusate incubations at 37 degrees C with low amounts of LCAT had a particle size and chemical composition similar to plasma HDL3a. In three of four perfusates incubated with higher levels of LCAT activity, the HDL products consisted of two distinct HDL subpopulations when examined by GGE. The major subpopulation was similar in size and composition to plasma HDL2a, while the minor subpopulation demonstrated the characteristics of plasma HDL2b. The data indicate that the discoidal HDL particles secreted by perfused monkey livers can serve as precursors to three of the major HDL subpopulations observed in plasma.  相似文献   

18.
Baboons from some families have a higher concentration of plasma high density lipoproteins (HDL) on a chow diet and accumulate large HDL (HDL1) when challenged with a high cholesterol and high saturated fat (HCHF) diet. HDL1 from high HDL1 animals contained more (1.5-fold) cholesteryl ester than HDL (HDL2 + HDL3) from high or low HDL1 animals. HDL from high HDL1 baboons had lower triglyceride content than that from low HDL1 baboons. HDL3 or HDL labeled with [3H]cholesteryl linoleate was incubated with entire lipoprotein fraction (d less than 1.21 g/ml) or very low density lipoprotein + low density lipoprotein (VLDL + LDL) (d less than 1.045 g/ml) and with lipoprotein-deficient serum (LPDS), and the radioactive cholesteryl ester and mass floating at d 1.045 g/ml (VLDL + LDL) after the incubation was measured. The transfer of cholesteryl esters from either HDL or HDL3, prepared from plasma of high HDL1 animals fed chow or the HCHF diet, was slower than the transfer from either HDL or HDL3 of low HDL1 animals, regardless of the source of transfer activity or the ratio of LDL:HDL-protein used in the assay. Addition of HDL from high HDL1 baboons into an assay mixture of plasma components from low HDL1 baboons decreased the transfer of cholesteryl ester radioactivity and mass from HDL to VLDL and LDL. In addition to HDL, a fraction of intermediate density lipoprotein (IDL) and denser HDL were also effective in inhibiting the transfer. These observations suggest that accumulation of HDL1 in high HDL1 baboons fed an HCHF diet is associated with a slower transfer of cholesteryl esters from HDL to LDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
It has been shown that in the solution of low density lipoproteins (LDL) during their incubation at 37 degrees C the turbidity and concentration of malondialdehyde was increased, as compared to that observed at 4 degrees C. Both parameters were slowed down by the addition of high density lipoproteins (HDL) into the medium. The protective effect of HDL depended on the time of incubation and the concentration of HDL added. Delipidated HDL had no effect. Similar action of HDL was established in the experiments where the peroxidation in LDL was induced by the xanthine-xanthine oxidase. The data obtained demonstrate that HDL possess an antioxidant property that may play an important role in their antiatherogenic action.  相似文献   

20.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号