首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570–3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite.  相似文献   

2.
The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching.  相似文献   

3.
The concentrations of ferrous and ferric ions change dramatically during the course of the batch experiments usually performed to study the kinetics of the bacterial oxidation of ferrous ions and sulfide minerals. This change in concentration of the iron species during the course of the experiment often makes it difficult to interpret the results of these experiments, as is evidenced by the lack of consensus concerning the mechanism of bacterial leaching. If the concentrations of ferrous and ferric ions were constant throughout the course of the batch experiment, then the role of the bacteria could be easily established, because the rate of the chemical leaching should be the same at a given redox potential in the presence and in the absence of bacteria. In this paper we report an experiment designed to obtain kinetic data under these conditions. The redox potential is used as a measure of the concentrations of ferrous and ferric ions, and the redox potential of the leaching solution is controlled throughout the experiment by electrolysis. The effects of ferrous, ferric, and arsenite ions on the rate of growth of Thiobacillus ferrooxidans on ferrous ions in this redox-controlled reactor are presented. In addition, the growth of this bacterium on ferrous ions in batch culture was also determined, and it is shown that the parameters obtained from the batch culture and the redox-controlled batch culture are the same. An analysis of the results from the batch culture indicates that the initial number of bacteria that are adapted to the solution depends on the concentrations of ferrous and arsenite ions.  相似文献   

4.
This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.  相似文献   

5.
In this study the effects of initial concentration of Fe(II) and Fe(III) ions as well as initial pH on the bioleaching of a low-grade sphalerite ore in a leaching column over a period of 120 days with and without bacteria were investigated. Four different modifications of medium were used as column feed solutions to investigate the effects of initial concentration of Fe(II) and Fe(III) ions on zinc extraction. The experiments were carried out using a bench-scale, column leaching reactor, which was inoculated with mesophilic iron oxidizing bacteria, Acidithiobacillus ferrooxidans, initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran). The effluent solutions were periodically analyzed for Zn, total Fe, Fe(II) and Fe(III) concentrations as well as pH values. Bacterial population was measured in the solution (free cells). Maximum zinc recovery in the column was achieved about 76% using medium free of initial ferrous ion and 11.4 g/L of ferric ion (medium 2) at pH 1.5. The extent of leaching of sphalerite ore with bacteria was significantly higher than that without bacteria (control) in the presence of ferrous ions. Fe(III) had a strong influence in zinc extraction, and did not adversely affect the growth of the bacteria population.  相似文献   

6.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

7.
Mechanism of Bacterial Pyrite Oxidation   总被引:14,自引:1,他引:13       下载免费PDF全文
The oxidation by Ferrobacillus ferrooxidans of untreated pyrite (FeS(2)) as well as HCl-pretreated pyrite (from which most of the acid-soluble iron species were removed) was studied manometrically. Oxygen uptake was linear during bacterial oxidation of untreated pyrite, whereas with HCl-pretreated pyrite both a decrease in oxygen uptake at 2 hr and nonlinear oxygen consumption were observed. Ferric sulfate added to HCl-pretreated pyrite restored approximately two-thirds of the decrease in total bacterial oxygen uptake and caused oxygen uptake to revert to nearly linear kinetics. Ferric sulfate also oxidized pyrite in the absence of bacteria and O(2); recovery of ferric and ferrous ions was in excellent agreement with the reaction Fe(2)(SO(4))(3) + FeS(2) = 3FeSO(4) + 2S, but the elemental sulfur produced was negligible. Neither H(2)S nor S(2)O(3) (2-) was a product of the reaction. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation, and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite.  相似文献   

8.
Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi   总被引:3,自引:0,他引:3  
The kinetics of bioleaching of pyrite (FeS(2)) by the acidophilic thermophilic bacterium Acidianus brierleyi was studied in a well-mixed batch reactor. Experiments were done at 65 degrees C and pH 1.5 on adsorption of A. brierleyi onto pyrite particles, liquid-phase oxidation of ferrous iron by A. brierleyi, and microbial leaching of pyrite. The adsorption of A. brierleyi was a fast process; equilibrium was attained within the first 30 min of exposure to pyrite. The adsorption equilibrium data were well correlated with the Langmuir isotherm. The oxidation of ferrous iron was markedly accelerated in the presence of A. brierleyi, and the growth yield on ferrous iron was determined. The bioleaching of pyrite by A. brierleyi was found to take place with a direct attack by adsorbed cells on the surface of pyrite, the chemical leaching of pyrite by ferric iron being insignificant. Rate data collected under a wide variety of operating variables were analyzed to determine kinetic and stoichiometric parameters for the microbial pyrite leaching. The specific growth rate on pyrite for A. brierleyi was about four times that for the mesophilic bacterium, Thiobacillus ferrooxidans, whereas the growth yields on pyrite for the two microbes were approximately equal to one another in magnitude. A comparison of A. brierleyi with T. ferrooxidans for pyrite leachability demonstrated the thermophile to be much more effective. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

10.
This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.  相似文献   

11.
In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations.  相似文献   

12.
The effect of dilution rate and feed solids concentration on the bacterial leaching of a pyrite/arsenopyrite ore concentrate was studied. A mathematical model was developed for the process based on the steady-state data collected over the range of dilution rates (20 to 110 h) and feed solids concentrations (6 to 18% w/v) studied. A modified Monod model with inhibition by arsenic was used to model bacterial ferrous ion oxidation rates. The model assumes that (i) pyrite and arsenopyrite leaching occurs solely by the action of ferric iron produced from the bacterial oxidation of ferrous iron and (ii) bacterial growth rates are proportional to ferrous ion oxidation rate. The equilibrium among the various ionic species present in the leach solution that are likely to have a significant effect on the bioleach process were included in the model. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
It is generally accepted that iron‐oxidizing bacteria, Thiobacillus ferrooxidans, enhance chalcopyrite leaching. However, this article details a case of the bacteria suppressing chalcopyrite leaching. Bacterial leaching experiments were performed with sulfuric acid solutions containing 0 or 0.04 mol/dm3 ferrous sulfate. Without ferrous sulfate, the bacteria enhance copper extraction and oxidation of ferrous ions released from chalcopyrite. However, the bacteria suppressed chalcopyrite leaching when ferrous sulfate was added. This is mainly due to the bacterial consumption of ferrous ions which act as a promoter for chalcopyrite oxidation with dissolved oxygen. Coprecipitation of copper ions with jarosite formed by the bacterial ferrous oxidation also causes the bacterial suppression of copper extraction. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 478–483, 1999.  相似文献   

14.
The leaching of iron pyrite by Thiobacillus ferrooxidans was studied in a continuous stirred tank reactor at a variety of dilution rates (0.012-0.22 h(-1)), pyrite surface areas (18-194 m(2)/L), and inlet soluble substrate (Fe(2+)) concentrations (0-3000 ppm). The bacterial leaching rate was found to increase with increasing pyrite surface area, dilution rate, and inlet Fe(2+) concentration. The concentration of bacteria in solution was related to the concentration of bacteria attached to the pyrite surface by a Langmuir-type adsorption-desorption relation. Fitting the experimental data to this relation yielded a value for the area occupied per bacterium of 86 mum(2). This result is consistent with the concept of preferential bacterial attachment of certain sites on the solid. A bacterial growth model was developed that included both bacterial growth in solution and growth of bacteria attached to the pyrite surface. The specific growth rate of the attached bacteria was calculated from this model and was found to increase with increasing solid dilution rate and to decrease with increasing pyrite surface area and soluble substance concentration. An explanation of these results based on an active-inactive site mechanisms was also developed.  相似文献   

15.
The influence of temperature, pH, and substrate and product concentrations on the oxidation rate of ferrous iron by biofilm of Thiobacillus ferrooxidans was determined. The experiments were performed in an inverse fluidized-bed biofilm reactor in which the biofilm thickness was kept constant at 80 mum. Oxygen concentration and diffusion through the biofilm did not limit the oxidation rate. The oxidation rate was almost unaffected by temperature between 13 and 38 degrees C, pH between 1.3 and 2.2, ferric iron concentration up to 14 g/L, or ferrous iron concentration from 4 to 13 g/L. The kinetics of the process was described by the Monod equation with respect to the mass of the biofilm and with ferrous ions as the limiting substrate.  相似文献   

16.
Microbial leaching of metals from sulfide minerals   总被引:20,自引:0,他引:20  
Microorganisms are important in metal recovery from ores, particularly sulfide ores. Copper, zinc, gold, etc. can be recovered from sulfide ores by microbial leaching. Mineral solubilization is achieved both by 'direct (contact) leaching' by bacteria and by 'indirect leaching' by ferric iron (Fe(3+)) that is regenerated from ferrous iron (Fe(2+)) by bacterial oxidation. Thiobacillus ferrooxidans is the most studied organism in microbial leaching, but other iron- or sulfide/sulfur-oxidizing bacteria as well as archaea are potential microbial agents for metal leaching at high temperature or low pH environment. Oxidation of iron or sulfur can be selectively controlled leading to solubilization of desired metals leaving undesired metals (e.g., Fe) behind. Microbial contribution is obvious even in electrochemistry of galvanic interactions between minerals.  相似文献   

17.
Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans.   总被引:7,自引:0,他引:7  
Oxidation of stannous chloride by Thiobacillus ferrooxidans was studied manometrically. At low stannous ion concentrations, initial oxidation rate was proportional to concentration. Optimum pH for oxidation was 2.3 optimum temperature was 37-40 degrees C. Spectrophotometry showed reduction of cytochromes in suspensions of whole cells on addition of ferrous, stannous, or cuprous salts. Cytochrome c reductase activity in cell-free extracts was assayed with ferrous, stannous, or cuprous ions as electron donors. It appears unlikely that an essential non-biological reaction, the reduction of ferric ions by stannous or cuprous ions, is involved. Growth of T. ferrooxidans was not obtained with either stannous chloride or stannous sulphate as sole energy source.  相似文献   

18.
Summary The leaching activity of five batches of Thiobacillus ferrooxidans, strain F26-77, cultivated under various conditions, towards elemental sulphur, ferrous ions, pyrite, covellite, chalcopyrite and sphalerite was studied. The activities of sulphite oxidase, thiosulphate oxidase and rhodanese were determined in crude, cell-free bacterial extracts. The effectiveness of leaching was directly correlated with the enzymic activity of the cultures. The results suggest that the activities of the enzymes metabolizing sulphur and its inorganic compounds in Thiobacillus ferrooxidans, or bacterial leaching activity on sulphur and sulphides, rather than the rate of oxidation of ferrous ions, should be taken as the criterion of usefulness for the leaching of sulphide minerals.  相似文献   

19.
The stoichiometry and kinetics of the spontaneous, chemical reaction between pyrite and ferric iron was studied at 30, 45, and 70 degrees C in shake flasks at pH 1.5 by monitoring the ferrous iron, total iron, elemental sulfur, and sulfate concentration profiles in time. It was found that the sulfur moiety of pyrite was oxidized completely to sulfate. Elemental sulfur was not produced in detectable amounts. The iron moiety of pyrite was released as ferrous iron. All observed initial reaction rates could be fitted into an empirical equation. This equation includes the concentrations of ferric iron and pyrite, and a constant which is dependent on the temperature and the nature of the main anion present. It was observed that ferrous iron formed during the reaction slowed down the oxidation of pyrite by ferric iron. The extent of this effect decreased with increasing temperature. With the aid of the empirical equation, the contribution of the chemical oxidation of pyrite by ferric iron to the overall oxidation in a hypothetical plug-flow reactor, in which biologically mediated oxdidation of pyrite and ferrous iron by oxygen also takes place, can be assessed. At 30, 45, and 70 degrees C, respectively, 2, 8-17, and 43% of the pyrite was oxidized chemically by ferric iron. Therefore, it is expected that only in reactors operating at high temperatures with extremely thermophilic bacteria, will chemical oxidation cause a significant deviation from the apparent first order overall kinetics of biological pyrite oxidation.  相似文献   

20.
A chemo-biochemical process using Thiobacillus ferrooxidans for desulphurization of gaseous fuels and emissions containing hydrogen sulphide (H2S) has been developed. In the first stage, H2S present in fuel gas and emissions is selectively oxidized to elemental sulphur using ferric sulphate. The ferrous sulphate produced in the first stage of the process is oxidized to ferric sulphate using Thiobacillus ferrooxidans for recycle and reuse in the process. The effects of process variables, temperature, pH, total dissolved solids (TDS), elemental sulphur, ferric and magnesium ions on bio-oxidation of ferrous ions to ferric ions were investigated using flask culture experiments. The bio-oxidation of ferrous ions to ferric ions could be achieved efficiently in the temperature range of 20(+/-1)-44(+/-1) degrees C. A pH range of 1.8(+/-0.02)-2.2(+/-0.02) was optimum for the growth of culture and effective bio-oxidation of ferrous ions to ferric ions. The effect of TDS on bio-oxidation of ferrous ions indicated that a preacclimatized culture in a growth medium containing high dissolved solid was required to achieve effective bio-oxidation of ferrous ions. Elemental sulphur ranging from 1000 to 100,000 mg/l did not have any effect on efficiency of ferrous ion oxidation. The efficiency of bio-oxidation of ferrous ions to ferric ions was not affected in the presence of ferric ions up to a concentration of 500 mg/l while 3 mg/l of magnesium ion was optimal for achieving effective bio-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号