首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

2.
The isocoumarins (1-50 microM) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin isolated from Paepalanthus bromelioides, were assessed for antioxidant activity using isolated rat liver mitochondria and non-mitochondrial systems, and compared with the flavonoid quercetin. The paepalantine and paepalantine dimers, but not vioxanthin, were effective at scavenging both 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) and superoxide (O(2)(-)) radicals in non-mitochondrial systems, and protected mitochondria from tert-butylhydroperoxide-induced H(2)O(2) accumulation and Fe(2+)-citrate-mediated mitochondrial membrane lipid peroxidation, with almost the same potency as quercetin. These results point towards paepalantine, followed by paepalantine dimer, as being a powerful agent affording protection, apparently via O(2)(-) scavenging, from oxidative stress conditions imposed on mitochondria, the main intracellular source and target of those reactive oxygen species. This strong antioxidant action of paepalantine was reproduced in HepG2 cells exposed to oxidative stress condition induced by H(2)O(2).  相似文献   

3.
An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.  相似文献   

4.
The importance of BCL-2 family proteins in the control of cell death has been clearly established. One of the key members of this family, BAX, has soluble, membrane-bound, and membrane-integrated forms that are central to the regulation of apoptosis. Using purified monomeric human BAX, defined liposomes, and isolated human mitochondria, we have characterized the soluble to membrane transition and pore formation by this protein. For the purified protein, activation, but not oligomerization, is required for membrane binding. The transition to the membrane environment includes a binding step that is reversible and distinct from the membrane integration step. Oligomerization and pore activation occur after the membrane integration. In cells, BAX targets several intracellular membranes but notably does not target the plasma membrane while initiating apoptosis. When cholesterol was added to either the liposome bilayer or mitochondrial membranes, we observed increased binding but markedly reduced integration of BAX into both membranes. This cholesterol inhibition of membrane integration accounts for the reduction of BAX pore activation in liposomes and mitochondrial membranes. Our results indicate that the presence of cholesterol in membranes inhibits the pore-forming activity of BAX by reducing the ability of BAX to transition from a membrane-associated protein to a membrane-integral protein.  相似文献   

5.
Kim MK  Min do S  Park YJ  Kim JH  Ryu SH  Bae YS 《FEBS letters》2007,581(9):1917-1922
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair.  相似文献   

6.
Fosfomycin is clinically recognized to reduce the aminoglycoside antibiotics-induced nephrotoxicity. However, little has been clarified why fosfomycin protects the kidney from the aminoglycosides-induced nephrotoxicity. Gentamicin, a typical aminoglycoside, is reported to cause lipid peroxidation. We focused on lipid peroxidation induced by gentamicin as a mechanism for the aminoglycosides-induced nephrotoxicity. The aim of this study is to investigate the effect of fosfomycin on the gentamicin-induced lipid peroxidation. In rat renal cortex mitochondria, fosfomycin was shown to depress the gentamicin-induced lipid peroxidation, which was evaluated by formation of thiobarbituric acid reactive substances (TBARS). Interestingly, this effect was observed in rat renal cortex mitochondria, but not in rat liver microsomes. However, fosfomycin did not affect lipid peroxidation of arachidonic acid caused by gentamicin with iron. Fosfomycin inhibited the gentamicin-induced iron release from rat renal cortex mitochondria. These results indicated that fosfomycin inhibited the gentamicin-induced lipid peroxidation by depressing the iron release from mitochondria. This may possibly be one mechanism for the protection of fosfomycin against the gentamicin-induced nephrotoxicity.  相似文献   

7.
Wasilewski M  Wojtczak L 《FEBS letters》2005,579(21):4724-4728
Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.  相似文献   

8.
Wheat seeds contain different lipid binding proteins that are low molecular mass, basic and cystine-rich proteins. Among them, the recently characterized puroindolines have been shown to inhibit the growth of fungi in vitro and to enhance the fungal resistance of plants. Experimental data, using lipid vesicles, suggest that this antimicrobial activity is related to interactions with cellular membranes, but the underlying mechanisms are still unknown. This paper shows that extracellular application of puroindolines on voltage-clamped Xenopus laevis oocytes induced membrane permeabilization. Electrophysiological experiments, on oocytes and artificial planar lipid bilayers, suggest the formation, modulated by voltage, of cation channels with the following selectivity: Cs(+) > K(+) > Na(+) > Li(+) > choline = TEA. Furthermore, this channel activity was prevented by addition of Ca(2+) ions in the medium. Puroindolines were also able to decrease the long-term oocyte viability in a voltage-dependent manner. Taken together, these results indicate that channel formation is one of the mechanisms by which puroindolines exert their antimicrobial activity. Modulation of channel formation by voltage, Ca(2+), and lipids could introduce some selectivity in the action of puroindolines on natural membranes.  相似文献   

9.
Wang Z  Xie W  Chi F  Li C 《FEBS letters》2005,579(7):1683-1687
Although non-specific lipid transfer proteins (nsLTPs) are widely present in plants, their functions and regulations have not been fully understood. In this report, Arabidopsis nsLTP1 was cloned and expressed to investigate its binding to calmodulin (CaM). Gel overlay assays revealed that recombinant nsLTP1 bound to CaM in a calcium-independent manner. The association of nsLTP1 and CaM was corroborated using CaM-Sepharose beads to specifically isolate recombinant nsLTP1 from crude bacterial lysate. The CaM-binding site was mapped in nsLTP1 to the region of 69-80 amino acids. This region is highly conserved among plant nsLTPs, implicating that nsLTPs are a new family of CaM-binding proteins whose functions may be mediated by CaM signaling.  相似文献   

10.
Choi WC  Kim MH  Ro HS  Ryu SR  Oh TK  Lee JK 《FEBS letters》2005,579(16):3461-3466
Lipase L1 from Geobacillus stearothermophilus L1 contains an unusual extra domain, making a tight intramolecular interaction with the main catalytic domain through a Zn2+-binding coordination. To elucidate the role of the Zn2+, we disrupted the Zn2+-binding site by mutating the zinc-ligand residues (H87A, D61A/H87A, and D61A/H81A/H87A/D238A). The activity vs. temperature profiles of the mutant enzymes showed that the disruption of the Zn2+-binding site resulted in a notable decrease in the optimal temperature for maximal activity from 60 to 45-50 degrees C. The mutations also abolished the Zn2+-induced thermal stabilization. The wild-type enzyme revealed a 34.6-fold increase in stabilization with the addition of Zn2+ at 60 degrees C, whereas the mutant enzymes exhibited no response to Zn2+. Additional circular dichroism spectroscopy studies also confirmed the structural stabilizing role of Zn2+ on lipase L1 at elevated temperatures.  相似文献   

11.
The functional role of CD36 protein detected in mitochondrial fractions in long chain fatty acid (LCFA) oxidation is unclear due to conflicting results obtained in Cd36 knockout mice and experiments using sulfo-N-succinimidyl oleate (SSO) for inhibition of CD36 mediated LCFA transport. We investigated effect of SSO on mitochondrial respiration and found that SSO substantially inhibits not only LCFA oxidation, but also oxidation of flavoprotein- and NADH-dependent substrates and generation of mitochondrial membrane potential. Experiments in rat liver, heart and kidney mitochondria demonstrated a direct effect on mitochondrial respiratory chain with the most pronounced inhibition of the complex III (IC50 4 μM SSO). The results presented here show that SSO is a potent and irreversible inhibitor of mitochondrial respiratory chain.  相似文献   

12.
To gain insight into the processes by which acetic acid-induced programmed cell death (AA-PCD) takes place in yeast, we investigated both cytochrome c release from yeast mitochondria and mitochondrial coupling over the time course of AA-PCD. We show that the majority of cytochrome c release occurs early in AA-PCD from intact coupled mitochondria which undergo only gradual impairment. The released cytochrome c can be reduced both by ascorbate and by superoxide anion and in turn be oxidized via cytochrome c oxidase, thus working both as a ROS scavenger and a respiratory substrate. Late in AA-PCD, the released cytochrome c is degraded.  相似文献   

13.
Fesselin is a natively unfolded protein that is abundant in avian smooth muscle. Like many natively unfolded proteins, fesselin has multiple binding partners including actin, myosin, calmodulin and α-actinin. Fesselin accelerates actin polymerization and bundles actin. These and other observations suggest that fesselin is a component of the cytoskeleton. We have now cloned fesselin and have determined the cDNA derived amino acid sequence. We verified parts of the sequence by Edman analysis and by mass spectroscopy. Our results confirmed fesselin is homologous to human synaptopodin 2 and belongs to the synaptopodin family of proteins.  相似文献   

14.
Tim44 is an essential component of the translocase of the inner mitochondrial membrane (TIM) complex that mediates transport of nuclear encoded mitochondrial precursors across the inner membrane. Here, we have investigated the topology of Tim44 by probing mitochondria with membrane impermeable 3-(N-maleimidopropionyl)biocytin (MPB) followed by the specific immunoprecipitation of modified proteins. Our data indicate that a single cysteine residue, Cys-369, located in the C-terminal domain of the yeast Tim44 is exposed to the mitochondrial intermembrane space.  相似文献   

15.
Marie-Paule Roisin  Adam Kepes 《BBA》1972,275(3):333-346
The properties of the membrane-bound ATPase (EC 3.6.1.3) of Escherichia coli have been reexamined using membranes obtained by mechanical disruption of exponentially growing cells.

The activity exhibited an absolute requirement for Mg2+ in the neutral pH range, while Ca2+ was found able to activate ATPase at more alkaline pH. Optimal activity was observed at pH 7.5, with a Mg/ATP ratio of 0.5.

ADP was found to inhibit ATP hydrolysis and to transform the Michaelian ATP concentration dependence with a Km of 0.5 mM into a sigmoid curve with increasing Km and decreasing V.

In contrast ADP activated an ATP-ADP exchange process and this shift from hydrolysis to exchange was stimulated by high Mg2+ and by orthophosphate.

All nucleoside triphosphates tested interfered with ATP hydrolysis, all could be hydrolyzed and could donate their terminal phosphate group to ADP. The relative efficiencies of nucleoside triphosphates in these three processes varied in parallel with minor discrepancies.

ATP hydrolysis was inhibited by N,N′-dicyclohexylcarbodiimide (DCCD) Dio 9, NaN3 and pyrophosphate, the first two being ineffective against ATP-ADP exchange, the third being stimulatory and the last inhibitory.

ATP hydrolysis and ATP-ADP exchange are tentatively attributed to the terminal enzyme of oxidative phosphorylation.  相似文献   


16.
The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity. (1R,3R)-N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamide (HPA), a synthesized analogue of ceramide, inhibits ceramide transfer by CERT. Here we report crystal structures of the CERT START domain in complex with HPAs of varying acyl chain lengths. In these structures, one HPA molecule is buried in the amphiphilic cavity where the amide and hydroxyl groups of HPA form a hydrogen-bond network with specific amino acid residues. The Ω1 loop, which has been suggested to function as a gate of the cavity, adopts a different conformation when bound to HPA than when bound to ceramide. In the Ω1 loop region, Trp473 shows the largest difference between these two structures. This residue exists inside of the cavity in HPA-bound structures, while it is exposed to the outside of the protein in the apo-form and ceramide-bound complex structures. Surface plasmon resonance experiments confirmed that Trp473 is important for interaction with membranes. These results provide insights into not only the molecular mechanism of inhibition by HPAs but also possible mechanisms by which CERT interacts with ceramide.  相似文献   

17.
Lee JM  Kim YJ  Ra H  Kang SJ  Han S  Koh JY  Kim YH 《FEBS letters》2008,582(13):1871-1876
The depletion of intracellular zinc with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) induces protein synthesis-dependent apoptosis. Here we examined the involvement of caspase induction in apoptosis. Among the examined caspases, only caspase-11 was increased by TPEN. Caspase-11 activity also increased, which resulted in caspase-3 activation. Cycloheximide or actinomycin D blocked caspase-11 induction, reduced caspase-11 and -3 activation, and attenuated TPEN-induced neuronal apoptosis. Blockade of caspase-11 by a chemical inhibitor or genetic deletion attenuated TPEN-induced apoptosis, indicating a critical role of caspase-11 in TPEN-induced apoptosis. Although mitochondria-mediated caspase-9/-3 activation also contributed to TPEN-induced apoptosis, caspase-11 is likely a key inducible apoptosis-inducing protein.  相似文献   

18.
1. Oxidoreduction of cytochrome b in rat-liver mitochondria and sonicated particles from beef-heart mitochondria was studied with emphasis on the influence of red/ox and energy conditions.  相似文献   

19.
Krylova SM  Musheev M  Nutiu R  Li Y  Lee G  Krylov SN 《FEBS letters》2005,579(6):1371-1375
Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind double-stranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied.  相似文献   

20.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号